В основе координационной деятельности ЦНС лежит взаимодействие между процессами возбуждения и торможения. О существовании возбуждения в нервах, мышцах, в ЦНС было известно давно. Торможение в ЦНС было открыто И.М.Сеченовым (1862 г.) в опытах на лягушках и получило название «Сеченовское торможение». Он определял время сгибательного рефлекса (по Тюрку), погружая лапку лягушки в кислоту, а затем на зрительные бугры накладывал кристаллик поваренной соли. После наложения кристаллика происходило удлинение времени рефлекса или рефлекс полностью затормаживался, а после снятия кристаллика соли и промывания этого участка мозга водой время рефлекса восстанавливалось до исходного уровня. Согласованная (координационная) деятельность обеспечивается за счет ряда механизмов:

1) Принцип доминанты. Он был сформулирован А.А.Ухтомским как основной принцип работы нервных центров. Доминантный (или господствующий) очаг возбуждения характеризуется следующими свойствами: повышенной возбудимостью; инертностью (стойкостью) возбуждения, т.е. может сохраняться длительное время; способностью к суммации возбуждений, притягивая на себя возбуждение с других центров; способностью тормозить субдоминантные очаги возбуждения других нервных центров.

2) Принцип окклюзии. Этот принцип противоположен пространственному облегчению или суммации, и он заключается в том, что два афферентных входа совместно возбуждают меньшую группу мотонейронов по сравнению с эффектами при раздельной их активации. Причина окклюзии состоит в том, что афферентные входы в силу конвергенции отчасти адресуются к одним и тем же мотонейронам, которые затормаживаются при активации обоих входов одновременно. Явление окклюзии проявляется в случаях применения сильных афферентных раздражений.

3) Принцип обратной связи. Процессы саморегуляции в организме в полном объеме могут осуществляться только в том случае, когда функционирует канал обратной связи. За счет импульсов, поступающих по этому каналу, происходит оценка правильности исполнения поставленной задачи, а если она не выполнена, то вносятся коррекции для достижения результата.

Велико значение механизмов обратной связи в поддержании гомеостаза. Так, например, поддержание постоянного уровня кровяного давления осуществляется за счет изменения импульсной активности барорецепторов сосудистых рефлексогенных зон, в результате чего измененяеся тонус вазомоторных симпатических нервов и таким образом нормализуют кровяное давление.

4) Принцип реципрокности (сочетанности, сопряженности, взаимообусловленности). Он отражает характер отношений между центрами ответственными за осуществление противоположных функций (вдоха и глотания, выдоха и выдоха, сгибания и разгибания конечностей и т.д.). Например, активация проприорецепторов мышцы-сгибателя одновременно возбуждает центр мышц сгибателей и тормозит центр мышц разгибателей. Реципрокное торможение играет важную роль в координации двигательных актов. Реципркные отношения имеют динамический характер (о чем говорил еще Введенский), а Шеррингтон эти отношения рассматривал как статические явления. Опытами П.К.Анохина с перекрестным подшиванием сухожилий сгибателей к разгибателям и наоборот было установлено, что через 6–8 месяцев мышцы сгибатели начинают выполнять функцию разгибателей, а разгибатели функцию сгибателей. Такая перестройка реципрокных взаимоотношений была бы невозможна, если реципрокные отношения имели бы строго раз и навсегда зафиксированный (статический) характер. За счет пластичности ЦНС и в результате постоянной неадекватной импульсации с сокращающихся мышц происходит изменение первоначального функционального взаимоотношения между сгибательным и разгибательным центрами. Эти исследования Анохина, проведенные еще в 30–е годы, послужили основой для введения понятия обратная афферентация (шестой составной части рефлекторного пути) и явились основой для создания теории о функциональных системах и биологической кибернетики (опередив в этом отношении Винера, который считается основоположником кибернетики (1948 г.), примерно на 13–15 лет).

5) Принцип общего конечного пути. Эффекторные нейроны ЦНС, например, мотонейроны спинного мозга, могут вовлекаться в осуществление различных реакций организма возбуждениями, приходящими к ним от большого числа афферентных и промежуточных нейронов, для которых они являются конечным путем (путем от ЦНС к эффектору). Например, на мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна афферентных нейронов, нейронов пирамидного тракта и экстрапирамидной системы (ядер мозжечка, ретикулярной формации и многих других структур)

6) Явления конвергенции - схождение нервных импульсов на одни и те же центральные нейроны. Такая особенность зависит не только от функциональных свойств центров, но обусловлено также количественными соотношениями периферических рецепторных и промежуточных центральных нейронов. Это соотношение составляет примерно 10:1. Явления конвергенции играют решающее значение при формировании общего конечного пути.

7) Явления дивергенции - процесс противоположный конвергенции, т.е. импульсы, поступающие в ЦНС, распространяются (иррадиируют) на соседние участки.

8) Субординационные взаимоотношения - соподчинение, т.е. вышележащие отделы ЦНС оказывают свое регулирующее влияние на нижележащие отделы.

3-1. Какой принцип лежит в основе деятельности нервной системы? Нарисуйте схему его реализации.

3-2. Перечислите защитные рефлексы, которые возникают при раздражении слизистой оболочки глаз, полости носа, рта, глотки и пищевода.

3-3. Проведите по всем классификационным признакам рвотный рефлекс.

3-4. Почему время рефлекса зависит от числа вставочных нейронов?

3-5. Можно ли зарегистрировать потенциал действия нерва А, если раздражать нерв В в тех условиях опыта, которые показаны на схеме (в точке 1)? А если нанести раздражение на нерв А в точке 2?

3-6. Произойдет ли возбуждение нейрона, если к нему по нескольким аксонам одновременно подавать подпороговые стимулы? Почему?

3-7. Какова должна быть частота раздражающих стимулов, чтобы подпороговыми раздражениями вызвать возбуждение нейрона? Дайте ответ в общем виде.

3-8. На нейрон А по двум подходящим к нему аксонам подаются раздражения с частотой 50 г. С какой частотой нейрон А может посылать импульсы по всему аксону?


3-9. Что произойдет с мотонейроном спинного мозга при возбуждении клетки Реншоу?

3-10. Проверьте, верно ли составлена таблица:

3-11. Допустим, что возбуждения изображенного ниже центра достаточно, чтобы на каждый нейрон выделилось два кванта медиатора. Как изменится возбуждение центра и функция регулируемых им аппаратов, если вместо одного аксона одновременно раздражать аксоны А и Б? Как называется это явление?

3-12. Для возбуждения нейронов данного центра достаточно два кванта медиатора. Перечислите, какие нейроны нервного центра возбудятся, если раздражение нанести на аксоны А и В, В и С, А,В и С? Как называется это явление?

3-13. Каковы основные преимущества нервной регуляции функций по сравнению с гуморальной?

3-14. Длительным раздражением соматического нерва мышца доведена до утомления. Что произойдет с мышцей, если теперь подключить раздражение симпатического нерва, идущего к этой мышц? Как называется этот феномен?

3-15. На рисунке приведены кимограммы коленного рефлекса кошки. Раздражение каких структур среднего мозга вызывает, изображенные на кимограммах 1 и 2 изменения рефлексов?


3-16. Раздражение какой структуры среднего мозга вызывает реакцию, изображенную на приведенной электроэнцефало-грамме? Как называется эта реакция?

Альфа-ритм Бета-ритм


3-17. На каком уровне необходимо произвести перерезку ствола мозга, чтобы получить изменения тонуса мышц, изображенные на рисунке? Как называется это явление?

3-18. Как изменится тонус передних и задних конечностей у бульбарного животного при запрокидывании его головы назад?

3-19. Как изменится тонус мышц передних и задних конечностей бульбарного животного при наклоне его головы вперед?

3-20. Отметьте на ЭЭГ альфа, бета, тета и дельта -волны и дайте их частотную и амплитудную характеристику.

3-21. При измерении возбудимости сомы, дендритов и аксонного холмика нейрона получены следующие цифры: реобаза разных отделов клетки оказалась равной 100 мв, 30 мв., 10 мв. Скажите, каким отделам клетки соответствует каждый из параметров?

3-22. Мышца весом 150 г. за 5 минут потребила 20 мл. кислорода. Сколько, примерно, кислорода в минуту потребляют в этих условиях 150 г. нервной ткани?

3-23. Что происходит в нервном центре, если импульсы поступают к его нейронам с частотой, при которой ацетилхолин не успевает полностью разрушаться холинестеразой и накапливается на постсинаптической мембране в большом количестве?

3-24. Почему при введении стрихнина у лягушки наблюдаются судороги в ответ на любое, даже самое легкое раздражение?

3-25. Как изменится сокращение нервно-мышечного препарата, если в перфузируемую жидкость добавить холинэстеразу или аминоксидазу?

3-26. У собаки два месяца тому назад удален мозжечок. Какие симптомы нарушения двигательной функции Вы можете обнаружить у этого животного?

3-27. Что происходит с альфа ритмом на ЭЭГ у человека при действии на глаза светового раздражения и почему?

3-28. Какие из представленных кривых соответствуют потенциалу действия (ПД), возбуждающему постсинаптическому потенциалу (ВПСП) и тормозному постсинаптическому потенциалу (ТПСП)?


3-29. У больного полный разрыв спинного мозга между грудным и поясничным отделом. Будут ли у него наблюдаться расстройства акта дефекации и мочеиспускания, и если да, то в чем они проявятся в разные сроки после травмы?

3-30. У человека после огнестрельного ранения в область ягодицы на голени развилась незаживающая язва. Чем можно объяснить ее появление?

3-31. У животного разрушена ретикулярная формация ствола мозга. Может ли в этих условиях проявиться феномен Сеченовского торможения?

3-32. При раздражении коры мозга собака совершает движения передними лапами. Какая область мозга, по Вашему мнению, подвергается раздражению?

3-33. Животному введена большая доза аминазина, который блокирует восходящую активирующую систему ретикулярной формации мозгового ствола. Как при этом меняется поведение животного и почему?

3-34. Известно, что во время наркотического сна при операции наркотизатор постоянно следит за реакцией зрачков больного на свет. Для какой цели он это делает и с чем может быть связано отсутствие этой реакции?

3-35. Больной левша, страдает моторной афазией. Какая область коры больших полушарий у него поражена?

3-36. Больной правша, не помнит названий предметов, но дает правильное описание их назначения. Какая область головного мозга у этого человека поражена?

3-37. Мышечное волокно, как правило, имеет одну концевую пластинку, и каждый потенциал концевой пластинки превышает пороговый уровень. На центральных же нейронах находятся сотни и тысячи синапсов и ВПСП отдельных синапсов не достигают уровня порога. В чем физиологический смысл этих различий?

3-38. Два студента решили доказать в эксперименте, что тонус скелетных мышц поддерживается рефлекторно. Двух спинальных лягушек подвесили на крючке. Нижние лапки у них были слегка поджаты, что свидетельствует о наличии тонуса. Затем первый студент перерезал передние корешки спинного мозга, а второй - задние. У обеих лягушек лапки повисли, как плети. Какой из студентов поставил опыт правильно?

3-39. Почему при охлаждении мозга можно продлить продолжительность периода клинической смерти?

3-40. Почему при утомлении человека у него сначала нарушается точность движений, а потом уже сила сокращений?

3-41. Когда коленный рефлекс у пациента выражен слабо, для его усиления иногда предлагают больному сцепить руки перед грудью и тянуть их в разные стороны. Почему это приводит к усилению рефлекса?

3-42. При раздражении одного аксона возбуждаются 3 нейрона. При раздражении другого - 6. При совместном раздражении возбуждается 15 нейронов. На скольких нейронах конвергируют эти аксоны?

3-43. Обучаясь письму, ребенок «помогает» себе головой и языком. Каков механизм этого явления?

3-44. У лягушки был вызван сгибательный рефлекс. При этом возбуждаются центры сгибателей и реципрокно тормозятся центры разгибателей. Во время опыта регистрируют постсинаптические потенциалы мотонейронов. Какой из ответов (ВПСП сгибателя или ТСП разгибателя) регистрируется позже?

3-45. При пресинаптическом торможении возникает деполяризация мембраны, а при постсинаптическом - гиперполяризация. Почему же эти противоположные реакции дают один и тот же тормозный эффект?

3-46. При вставании человека на него начинает действовать сила тяжести. Почему при этом ноги не подгибаются?

3-47. Сохраняются ли у животного какие-либо рефлексы, кроме спинномозговых, после перерезки спинного мозга под продолговатым? Дыхание поддерживается искусственно.

3-48. Каким образом нисходящие влияния из ЦНС могут изменять двигательную активность, не воздействуя на мотонейроны спинного мозга?

3-49. У животного произведены последовательно две полные перерезки спинного мозга под продолговатым - на уровне С-2 и С-4 сегментов. Как изменится величина АД после первой и второй перерезок?

3-50. У двух больных произошло кровоизлияние в мозг - одного из них в кору головного мозга. у другого - в продолговатый мозг. У какого больного прогноз более неблагоприятный?

3-51. Что произойдет с кошкой, находящейся в состоянии децеребрационной ригидности после перерезки ствола мозга ниже красного ядра, если перерезать у нее теперь и задние корешки спинного мозга?

3-52. От конькобежца при беге на повороте дорожки стадиона требуется особо четкая работа ног. Имеет ли в этой ситуации значение, в каком положении находится голова спортсмена?

3-53. Укачивание (морская болезнь) возникает при раздражении вестибулярного аппарата, который влияет на перераспределение мышечного тонуса. Чем же объясняется появление симптомов тошноты и головокружения при морской болезни?

3-54. В эксперименте на собаке область вентромедиального ядра гипоталамуса нагрели до 50оС, затем животное содержали в обычных условиях. Как изменился внешний вид собаки через некоторое время?

3-55. При выключении коры больших полушарий человек теряет сознание. Возможен ли такой эффект при абсолютно неповрежденной коре и нормальном ее кровоснабжении?

3-56. У больного обнаружены нарушения деятельности ЖКТ. Врач в поликлинике направил его для лечения не терапевтическую, а в неврологическую клинику. Чем могло быть продиктовано такое решение?

3-57. Одним из основных критериев смерти мозга является отсутствие в нем электрической активности. Можно ли по аналогии говорить о смерти скелетной мышцы, если в покое с нее не удается зарегистрировать электромиограмму?

(Задачи №№ 3-58 – 3- 75 из Сборника задач под ред. Г.И. Косицкого [ 1])

3-58. Может ли безусловный рефлекс осуществ­ляться при участии лишь одного отдела центральной нервной системы? Осуществляется ли спинальный рефлекс в целом орга­низме при участии только одного («своего») сегмента спин­ного мозга? Отличаются ли, и, если да, то чем, рефлексы спинального животного от спинальных рефлексов, осуществляемых при участии выше расположенных отделов центральной нерв­ной системы

3-59. На каком уровне, I или II, надо провести раз­рез мозга и как надо поставить опыт Сечено ва, чтобы дока­зать наличие внутрицентраль-ного торможения?

Схема головного мозга лягушки

3-60. Укажите на рисунке структуры, вос­принимающие изменения состояния скелетных мышц и назо­вите их афферентную и эфферентную иннервацию. Что называют гамма–эфферентными волокнами и ка­кую роль они играют в проприорецепции? Используя схему, охарактери-зуйте физиологическую роль мышечного веретена

3-61.Какие виды торможения могут осуществлять­ся в структурах, изображенных на рисунках 1 и 2?

Схемы различных форм торможения в цент­ральной нервной системе

3-62. Назовите структуры, обозначен-ные на схеме цифрами 1, 2, 3. Какой процесс возни­кает в концевых разветвле­ниях аксона 1, если к нему придет импульс по пути 1? Какой процесс воз­никнет под действием им­пульсов от нейрона 2 в нервных окончаниях 1?

Расположение тормозящих синапсов на пресинаптических раз­ветвлениях аксона

3-63. Где можно зарегистрировать изображенную на рисунке электрическую активность и как ее называют? При каком нервном процессе регистрируется электри­ческая активность типа 1 и при каком - типа 2 Биоэлектрические отражения функционального состояния синапсов.

3-64. Как называется состояние, в котором находится кошка, изображенная на рисунке 2? По какой линии I, II, III или IV необходимо сделать разрез, чтобы у кошки возникло состояние, подобное изобра­женному на рисунке? Какие ядра и какого отдела ЦНС отделяются от ниже­расположенных при этом разрезе? 1. Схема перерезок мозга на раз­личных уровнях. 2. Кошка после перерезок ствола мозга.

3-65. Какая структурная особенность вегетатив­ной нервной системы изображена на схеме? Какие особен­ности иннервации органов связаны с такой структурой синаптических связей в ганглии?

3-66. Рассмотрев представленные схемы рефлектор­ных дуг, определите:

1) Можно ли зарегистрировать потенциал действия на 2–м чувствительном корешке при раздражении 1–го в опыте А?

2) Можно ли зарегистрировать потенциал действия на двигательном корешке 2 при раздражении двигательного ко­решка 1 в опыте Б?

3) О каком физиологическом явлении свидетельствуют факты, полученные в этих опытах?

3-67. В каком случае будет суммация, в ка­ком - окклюзия? Какой тип суммации в ЦНС изобра­жен на схеме?

3-68. Схема какого отдела вегетативной нервной системы изображена на рисунке? Какие органы и системы организма, инвертируются этим отделом вегетативной нервной системы?

3-69. Схема какого отдела вегетативной нервной системы изображена на рисунке? Назовите сегменты спинного мозга, в которых распо­ложены его центры. Иннервация каких органов и систем организма, осуществляются этим отделом?

3-70. Объясните, почему отсутствует первичный от­вет на второй «стимул (при сильном сближении времени нанесе­ния первого (обусловливающего) и второго (тестирующего) стимула Первичные от­веты, возникающие в спе­цифических проекцион­ных зонах коры при двух последовательных раз­дражениях чувствитель­ных нервных стволов. Виден «феномен подав­ления» второго первич­ного ответа. Буквами а, б, в, г, д и др. обозначен порядок опыта. Цифры обозначают время в мсек, между раздраже­ниями

3-71. Почему реакция коры больших полушарий у животных при афферентном раздражении и при раздраже­нии ретикулярной формации имеет одинаковые проявления на ЭЭГ? Как эта реакция называется?

Изменения электроэнцефалограммы при афферентном раздраже­нии (А)

и при раздражении ретикулярной формации (Б ).

3-72. Рассмотрите оба рисунка и объясните, почему при раздражении неспецифических ядер таламуса в раз­личных участках коры больших полушарий регистрируются изменения ЭЭГ? Как называют такую реакцию коры боль­ших полушарий? На рисунке А схематично представлена электрическая реакция различных зон коры головного мозга на раздражение ритмическим током неспецифических ядер таламуса у кошки. На рисунке Б - запись изменений ЭЭГ в зонах 1, 2, 3. Внизу - отметка раздражения.

3-73. Какая реакция на звук метронома регист­рируется в ЭЭГ у кошки, находящейся спокойном состоя­нии? Чем отличается ЭЭГ на рисунке А от ЭЭГ рисунка Б? Какова причина таких изменений ЭЭГ при реакции кошки на появление мыши?

Электроэнцефалографические реакции кошки на звук метронома при различных мотивационных состояниях (А и Б).

3-74. При раздражении каких структур мозга можно получить оборонительную реакцию? При раздраже­нии каких структур мозга можно получить у животных реак­цию самостимуляции?

Поведенческие реакции крыс при раздражении гипоталами-ческих структур

3-75. Схема какого рефлекса изображена на рисунке? Дайте пояснения. Как изменится тонус мышц, если произойдет повреждение заднего корешка спинного мозга?

(Задачи №№ 3-76 – 3-82 из CD-приложения у Учебнику по физиологии под ред. К.В. Судакова [ 3])

3-76. Одинаковыми по силе раздражителями у экспериментального животного вызваны два двигательных соматических рефлекса. Афферентная и эфферентная части рефлекторной дуги у первого рефлекса значительно длиннее, чем в рефлекторной дуге второго рефлекса. Тем не менее, время рефлекторной реакции меньше в первом случае. Как можно объяснить большую скорость реакции при наличии более протяженных афферентных и эфферентных путей. К какому типу относятся нервные волокна, обеспечивающие проведение возбуждения по афферентной и эфферентной части дуги соматического рефлекса?

3-77. Введение экспериментальному животному препарата приводит к прекращению соматических рефлексов. Какие участки рефлекторной дуги нужно подвергнуть электрическому раздражению, чтобы выявить, блокирует ли данный препарат проведение возбуждения в синапсах ЦНС, нервно-мышечном синапсе или нарушает сократительную активность самой скелетной мышцы.

3-78. Попеременное раздражение двух возбуждающих нервных волокон, конвергирующих к одному нейрону, не вызывает его возбуждения. При раздражении только одного из волокон с удвоенной частотой происходит возбуждение нейрона. Может ли возникнуть возбуждение нейрона при одновременном раздражении конвергирующих к нему волокон?

3-79. К одному нейрону конвергируют нервные волокна А, В и С. Приход возбуждения по волокну А вызывает деполяризацию мембраны нейрона и возникновение потенциала действия (ПД). При одновременном приходе возбуждения по волокнам А и В ПД не возникает и наблюдается гиперполяризация мембраны нейрона. При одновременном приходе возбуждения по волокнам А и С также не возникает ПД, но гиперполяризация мембраны нейрона не происходит. Какие из волокон являются возбуждающими, и какие – тормозными? Какие медиаторы являются тормозными в ЦНС? В каком случае торможение наиболее вероятно происходит по постсинаптическому механизму, в каком случае – по пресинаптическому?

3-80. У человека, пострадавшего в автомобильной аварии, произошел разрыв спинного мозга, в результате чего оказались парализованными нижние конечности? На каком уровне произошел разрыв спинного мозга?

3-81. Регуляция физиологических функций обеспечивается нервными центрами – совокупностями структур ЦНС, которые могут быть расположены на разных уровнях головного мозга, и вносить свой вклад в обеспечение процессов жизнедеятельности. С этой точки зрения, какое поражение, при прочих равных условиях более неблагоприятно для выживания больного - кровоизлияние в продолговатый мозг или полушария большого мозга?

3-82. Фармакологический препарат снижает повышенную возбудимость коры полушарий большого мозга. В экспериментах на животных показано, что препарат не оказывает непосредственного влияния на нейроны коры. На какие структуры головного мозга может влиять указный препарат, чтобы вызвать снижение повышенной возбудимости коры большого мозга?

Основным и специфическим проявлением деятельности нервной си­стемы является рефлекторный принцип. Это способность организма реагировать на внешние или внутренние раздражения двигательной, или секреторной реакцией. Основы учения о рефлекторной деятельности орга­низма были заложены французским ученым Рене Декартом (1596-1650). Наибольшее значение имели его представления о рефлекторном механизме взаимоотношений организма с окружающей средой. Сам термин «рефлекс» был введен значительно позднее - в основном после выхода работ выдающе­гося чешского анатома и физиолога Г. Прохаски (1749-1820).

Рефлекс - это закономерная реакция организма в ответ на раздраже­ние рецепторов, которая осуществляется рефлекторной дугой при участии центральной нервной системы. Это приспособительная реакция организма в ответ на изменение внутренней или окружающей среды. Рефлекторные реакции обеспечивают целостность организма и постоянство его внутрен­ней среды, рефлекторная дуга является основной единицей интегративной рефлекторной активности.

Значительный вклад в развитие рефлекторной теории внес И.М. Сеченов (1829-1905). Он первым использовал рефлекторный принцип для изучения физиологических механизмов психических процессов. В работе «Рефлексы головного мозга» (1863) И.М. Сеченов аргументировано доказал, что пси­хическая деятельность человека и животных осуществляется по механизму рефлекторных реакций, которые происходят в головном мозге, включая са­мые сложные из них - формирование поведения и мышление. На основании проведенных исследований он сделал вывод, что все акты сознательной и бессознательной жизни являются рефлекторными. Рефлекторная теория И.М. Сеченова послужила основой, на которой возникло учение И.П. Пав­лова (1849-1936) о высшей нервной деятельности. Разработанный им ме­тод условных рефлексов расширил научное понимание роли коры большого мозга как материального субстрата психики. И.П. Павлов сформулировал рефлекторную теорию работы головного мозга, которая основывается на трех принципах: причинности, структурности, единстве анализа и синтеза. П. К. Анохин (1898-1974) доказал значение обратной связи в рефлекторной деятельности организма. Суть ее состоит в том, что во время осуществления любого рефлекторного акта процесс не ограничивается лишь эффектором, а сопровождается возбуждением рецепторов рабочего органа, от которых информация о последствиях действия поступает афферентными путями к центральной нервной системе. Появились представления о «рефлекторном кольце», «обратной связи».

Рефлекторные механизмы играют существенную роль в поведении жи­вых организмов, обеспечивая адекватное их реагирование на сигналы окру­жающей среды. Для животных действительность сигнализируется почти исключительно раздражениями. Это первая сигнальная система действи­тельности, общая для человека и животных. И.П. Павлов доказал, что для человека, в отличие от животных, объектом отображения является не только окружающая среда, но и общественные факторы. Поэтому для него решаю­щее значение приобретает вторая сигнальная система - слово как сигнал первых сигналов.

Условный рефлекс лежит в основе высшей нервной деятельности че­ловека и животных. Он всегда включается как существенный компонент в самых сложных проявлениях поведения. Однако не все формы поведения живого организма можно объяснить с точки зрения рефлекторной теории, которая раскрывает лишь механизмы действия. Рефлекторный принцип не дает ответа на вопрос о целесообразности поведения человека и животных, не учитывает результата действия.

Поэтому на протяжении последних десятилетий на основании рефлек­торных представлений сформировалось понятие относительно ведущей роли потребностей как движущей силы поведения человека и животных. Наличие потребностей является необходимой предпосылкой любой дея­тельности. Деятельность организма приобретает определенную направлен­ность лишь при наличии цели, которая отвечает данной потребности. Каж­дому поведенческому акту предшествуют потребности, которые возникли в процессе филогенетического развития под влиянием условий окружающей среды. Именно поэтому поведение живого организма определяется не столь­ко реакцией на внешние воздействия, сколько необходимостью реализации намеченной программы, плана, направленных на удовлетворение той или иной потребности человека или животного.

П.К. Анохин (1955) разработал теорию функциональных систем, которая предусматривает системный подход к изучению механизмов работы голов­ного мозга, в частности, разработки проблем структурно-функциональной основы поведения, физиологии мотиваций и эмоций. Суть концепции - мозг может не только адекватно реагировать на внешние раздражения, но и пред­усматривать будущее, активно строить планы своего поведения и реализовывать их. Теория функциональных систем не исключает метода условных рефлексов из сферы высшей нервной деятельности и не заменяет его чем-то другим. Она дает возможность глубже вникать в физиологическую сущность рефлекса. Вместо физиологии отдельных органов или структур мозга си­стемный подход рассматривает деятельность организма в целом. Для любого поведенческого акта человека или животного нужна такая организация всех мозговых структур, которая обеспечит нужный конечный результат. Итак, в теории функциональных систем центральное место занимает полезный ре­зультат действия. Собственно факторы, которые находятся в основе дости­жения цели, формируются по типу разносторонних рефлекторных процессов.

Одним из важных механизмов деятельности центральной нервной си­стемы является принцип интеграции. Благодаря интегрированию сомати­ческих и вегетативных функций, которое осуществляется корой большого мозга через структуры лимбико-ретикулярного комплекса, реализуются разнообразные приспособительные реакции и поведенческие акты. Высшим уровнем интеграции функций у человека являются лобные отделы коры.

Важную роль в психической деятельности человека и животных играет принцип доминанты, разработанный О. О. Ухтомским (1875-1942). Доми­нанта (от лат. dominari господствовать) это превосходящее в централь­ной нервной системе возбуждение, которое формируется под влиянием стимулов окружающей или внутренней среды и в определенный момент подчиняет себе деятельность других центров.

Головной мозг с его высшим отделом - корой большого мозга - это слож­ная саморегулировочная система, построенная на взаимодействии возбуди­тельных и тормозных процессов. Принцип саморегуляции осуществляется на разных уровнях анализаторных систем - от корковых отделов до уровня рецепторов с постоянным подчинением низших отделов нервной системы высшим.

Изучая принципы функционирования нервной системы, не без основа­ния головной мозг сравнивают с электронной вычислительной машиной. Как известно, основой работы кибернетического оснащения являются прием, передача, переработка и сохранение информации (память) с дальнейшим ее воспроизведением. Для передачи информация должна быть закодирована, а для воспроизведения - раскодирована. Пользуясь кибернетическими поня­тиями, можно считать, что анализатор принимает, передает, перерабатывает и, возможно, сохраняет информацию. В корковых отделах осуществляется ее раскодирование. Это, наверное, достаточно, чтобы сделать возможной попытку сравнить мозг с компьютером. Вместе с тем нельзя отождествлять работу головного мозга с вычислительной машиной: «...мозг - наиболее капризная машина в мире. Будем же скромными и осторожными с выво­дами» (И.М. Сеченов, 1863). Компьютер - это машина и ничего больше. Все кибернетические устройства работают по принципу электрического или электронного взаимодействия, а в головном мозге, который создан путем эволюционного развития, кроме того, происходят сложные биохимические и биоэлектрические процессы. Они могут осуществляться только в живой ткани. Головной мозг, в отличие от электронных систем, функционирует не по принципу «все или ничего», а учитывает великое множество градаций между этими двумя крайностями. Эти градации обусловлены не электрон­ными, а биохимическими процессами. В этом существенное отличие физи­ческого от биологического. Головной мозг имеет качества, которые выходят за пределы тех, которые имеет вычислительная машина. Следует добавить, что поведенческие реакции организма в значительной мере определяются межклеточным взаимодействием в центральной нервной системе. К одному нейрону, как правило, подходят отростки от сотен или тысяч других нейро­нов, и он, в свою очередь, ответвляется в сотни или тысячи других нейро­нов. Никто не может сказать, сколько в мозге синапсов, но число 10 14 (сто триллионов) не кажется невероятным (Д. Хьюбел, 1982). Компьютер вме­щает значительно меньше элементов. Функционирование головного мозга и жизнедеятельность организма осуществляются в конкретных условиях окружающей среды. Поэтому удовлетворение тех или иных потребностей может быть достигнуто при условии адекватности этой деятельности суще­ствующим внешнесредовым условиям.

Для удобства изучения основных закономерностей функционирования головной мозг разделяют на три основные блока, каждый из которых вы­полняет свои определенные функции.

Первый блок - это филогенетически древнейшие структуры лимбико-ретикулярного комплекса, которые расположены в стволовых и глубинных отделах головного мозга. В их состав входят поясная извилина, морской ко­нек (гиппокамп), сосочкоподобное тело, передние ядра таламуса, гипотала­мус, сетчатая формация. Они обеспечивают регуляцию жизненно необходи­мых функций - дыхания, кровообращения, обмена веществ, а также общего тонуса. Относительно поведенческих актов, то эти образования принимают участие в регуляции функций, направленных на обеспечение пищевого и сексуального поведения, процессов сохранения вида, в регуляции систем, которые обеспечивают сон и бодрствование, эмоциональную деятельность, процессы памяти.

Второй блок - это совокупность образований, размещенных позади цен­тральной борозды: соматосенсорные, зрительные и слуховые зоны коры большого мозга. Основные их функции: прием, переработка и сохранение информации.

Нейроны системы, которые размещены преимущественно кпереди от центральной борозды и связаны с эффекторными функциями, реализацией двигательных программ, составляют третий блок.

Тем не менее следует признать, что нельзя провести четкой границы между сенсорными и моторными структурами мозга. Постцентральная извилина, которая является чувствительной проекционной зоной, тесно взаимосвязана с прецентральной двигательной зоной, образовывая единое сенсомоторное поле. Поэтому необходимо четко понимать, что та или дру­гая деятельность человека требует одновременного участия всех отделов нервной системы. Причем система в целом выполняет функции, которые выходят за пределы функций, присущих каждому из указанных блоков.

1. Принцип доминанты был сформулирован А. А. Ухтомским как основной принцип работы нервных центров. Согласно этому принципу для деятельности нервной системы характерно наличие в ЦНС доминирующих (господствующих) в данный период времени очагов возбуждения, в нервных центрах, которые и определяют направленность и характер функций организма в этот период. Доминантный очаг возбуждения характеризуется следующими свойствами:

Повышенной возбудимостью;

Стойкостью возбуждения (инертностью), т. к. трудно подавить другим возбуждением;

Способностью к суммации субдоминантных возбуждений;

Способностью тормозить субдоминантные очаги возбуждения, в функционально различных нервных центрах.

2. Принцип пространственного облегчения. Он проявляется в том, что суммарный ответ организма при одновременном действии двух относительно слабых раздражителей будет больше суммы ответов, полученных при их раздельном действии. Причина облегчения связана с тем, что аксон афферентного нейрона в ЦНС синаптирует с группой нервных клеток, в которой выделяют центральную (пороговую) зону и периферическую (подпороговую) "кайму". Нейроны, находящиеся в центральной зоне, получают от каждого афферентного нейрона достаточное количество синаптических окончаний (например, по 2) (рис. 13) , чтобы сформировать потенциал действия. Нейрон подпороговой зоны получает от тех же нейронов меньшее число окончаний (по 1), поэтому их афферентные импульсы будут недостаточны, чтобы вызвать в нейронах "каймы" генерацию потенциалов действия, а возникает лишь подпороговое возбуждение. Вследствие этого, при раздельном раздражении афферентных нейронов 1 и 2 возникают рефлекторные реакции, суммарная выраженность которых определяется только нейронами центральной зоны (3) . Но при одновременном раздражении афферентных нейронов потенциалы действия генерируются и нейронами подпороговой зоны. Поэтому выраженность такого суммарного рефлекторного ответа будет больше. Это явление получило название центрального облегчения. Оно чаще наблюдается при действии на организм слабых раздражителей.

Рис. 13. Схема явления облегчения (А) и окклюзии (Б). Кругами обозначены центральные зоны (сплошная линия) и подпороговая "кайма" (пунктирная линия) популяции нейронов.

3. Принцип окклюзии. Этот принцип противоположен пространственному облегчению и он заключается в том, что два афферентных входа совместно возбуждают меньшую группу мотонейронов по сравнению с эффектами при раздельной их активации. Причина окклюзии состоит в том, что афферентные входы в силу конвергенции отчасти адресуются к одним и тем же мотонейронам, которые затормаживаются при активации обоих входов одновременно (рис. 13). Явление окклюзии проявляется в случаях применения сильных афферентных раздражении.


4. Принцип обратной связи. Процессы саморегуляции в организме аналогичны техническим, предполагающим автоматическую регуляцию процесса с использованием обратной связи. Наличие обратной связи позволяет соотнести выраженность изменений параметров системы с ее работой в целом. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной обратной связью. В биологических системах положительная обратная связь реализуется в основном в патологических ситуациях. Отрицательная обратная связь улучшает устойчивость системы, т. е. ее способность возвращаться к первоначальному состоянию после прекращения влияния возмущающих факторов.

Обратные связи можно подразделять по различным признакам. Например, по скорости действия - быстрая (нервная) и медленная (гуморальная) и т. д.

Можно привести множество примеров проявления эффектов обратной связи. Например, в нервной системе так осуществляется регулирование активности мотонейронов. Суть процесса заключается в том, что импульсы возбуждения, распространяющиеся по аксонам мотонейронов, достигают не только мышц, но и специализированных промежуточных нейронов (клеток Реншоу), возбуждение которых тормозит активность мотонейронов. Данный эффект известен как процесс возвратного торможения.

В качестве примера с положительной обратной связью можно привести процесс возникновения потенциала действия. Так при формировании восходящей части ПД деполяризация мембраны увеличивает ее натриевую проницаемость, которая, в свою очередь, увеличивая натриевый ток, увеличивает деполяризацию мембраны.

Велико значение механизмов обратной связи в поддержании гомеостаза. Так, например, поддержание константного уровня кровяного давления осуществляется за счет изменения импульсной активности барорецепторов сосудистых рефлексогенных зон, которые измененяют тонус вазомоторных симпатических нервов и таким образом нормализуют кровяное давление.

5. Принцип реципрокности (сочетанности, сопряженности, взаимоисключения). Он отражает характер отношений между центрами ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечности и т. д.). Например, активация проприорецепторов мышцы-сгибателя одновременно возбуждает мотонейроны мышцы-сгибателя и тормозит через вставочные тормозные нейроны мотонейроны мышцы-разгибателя (рис. 18). Реципрокное торможение играет важную роль в автоматической координации двигательных актов.

6. Принцип общего конечного пути. Эффекторные нейроны ЦНС (прежде всего мотонейроны спинного мозга), являясь конечными в цепочке состоящей из афферентных, промежуточных и эффекторных нейронов, могут вовлекаться в осуществление различных реакций организма возбуждениями, приходящими к ним от большого числа афферентных и промежуточных нейронов, для которых они являются конечным путем (путем от ЦНС к эффектору). Например, на мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна афферентных нейронов, нейронов пирамидного тракта и экстрапирамидной системы (ядер мозжечка, ретикулярной формации и многих других структур). Поэтому эти мотонейроны, обеспечивающие рефлекторную деятельность конечности, рассматриваются как конечный путь для общей реализации на конечность многих нервных влияний.


В основе функционирования нервной системы лежит рефлекторная деятельность. Рефлекс (от лат. Reflexio - отражаю) - это ответная реакция организма на внешнее или внутреннее раздражение при обязательном участии нервной системы.

Рефлекторный принцип функционирования нервной системы

Рефлекс – это ответная реакция организма на внешнее или внутреннее раздражение. Рефлексы подразделяют на:

  1. безусловные рефлексы: врожденные реакции организма на раздражения, осуществляемые с участием спинного мозга или ствола головного мозга;
  2. условные рефлексы: приобретенные на основе безусловных рефлексов временные реакции организма, осуществляемые при обязательном участии коры полушарий большого мозга, составляющие основу высшей нервной деятельности.

Морфологической основой рефлекса является рефлекторная дуга, представленная цепью нейронов, обеспечивающих восприятие раздражения, трансформацию энергии раздражения в нервный импульс, проведение нервного импульса до нервных центров, обработку поступающей информации и реализацию ответной реакции.

Рефлекторная деятельность предполагает наличие механизма, состоящего из трех основных элементов, последовательно соединенных между собой:

1. Рецепторов ,воспринимающих раздражение и трансформирующих его в нервный импульс; обычно рецепторы представлены различными чувствительными нервными окончаниями в органах;

2. Эффекторов ,которые результируют эффект раздражения рецепторов в форме определенной реакции; к эффекторам относятся все внутренние органы, кровеносные сосуды и мышцы;

3. Цепей последовательно связанных между собой нейронов, которые, направленно передавая возбуждение в форме нервных импульсов, обеспечивают координацию деятельности эффекторов в зависимости от раздражения рецепторов.

Цепь последовательно связанных между собой нейронов образует рефлекторную дугу ,которая и составляет материальный субстрат рефлекса.

В функциональном отношении нейроны, образующих рефлекторную дугу, можно разделить на:

1. афферентные (сенсорные) нейроны, которые воспринимают раздражение и передают его на другие нейроны. Сенсорные нейроны всегда располагаются за пределами центральной нервной системы в сенсорных ганглиях спинномозговых и черепных нервов. Их дендриты образуют в органах чувствительные нервные окончания.

2. эфферентные (двигательные, моторные) нейроны, или мотонейроны, передают возбуждение на эффекторы (например, мышцы или кровеносные сосуды);

3. вставочные нейроны (интернейроны) соединяют между собой афферентные и эфферентные нейроны и тем самым замыкают рефлекторную связь.

Простейшая рефлекторная дуга состоит из двух нейронов - афферентного и эфферентного. В рефлекторной дуге более сложной участвуют три нейрона: афферентный, эфферентный и вставочный. Максимальное количество нейронов, участвующих в рефлекторном ответе нервной системы ограничено, особенно в тех случаях, когда в рефлекторный акт вовлекаются различные отделы головного и спинного мозга. В настоящее время за основу рефлекторной деятельности принимается рефлекторное кольцо. Классическая рефлекторная дуга дополнена четвертым звеном - обратной афферентацией от эффекторов. Все нейроны, участвующие в рефлекторной деятельности имеют строгую локализацию в нервной системе.

Нервный центр

Центр нервной системы в анатомическом отношении представляет собой группу рядом расположенных нейронов, тесно связанных между собой структурно и функционально и выполняющих в рефлекторной регуляции общую функцию. В нервном центре происходит восприятие, анализ поступающей информации и передача ее на другие нервные центры или эффекторы. Поэтому каждый нервный центр имеет свою систему афферентных волокон, посредством которых он приводится в активное состояние, и систему эфферентных связей, которые проводят нервное возбуждение к другим нервным центрам или эффекторам. Различают периферические нервные центры ,представленные узлами (ганглиями ): чувствительными и вегетативными. В центральной нервной системе различают ядерные центры (ядра) - локальные скопления нейронов, и корковые центры - обширное расселение нейронов по поверхности мозга.

Кровоснабжение головного и спинного мозга

I. Кровоснабжение головного мозга осуществляется ветвями левой и правой внутренних сонных артерий и ветвями позвоночных артерий.

Внутренняя сонная артерия, вступив в полость черепа, делится на глазную артерию и переднюю и среднюю мозговую артерии. Передняя мозговая артерия питает главным образом лобную долю мозга, средняя мозговая артерия - теменную и височную доли, а глазная артерия снабжает кровью глазное яблоко. Передние мозговые артерии (правая и левая) соединяются поперечным анастомозом - передней соединительной артерией.

Позвоночные артерии (правая и левая) в области ствола мозга соединяются и образуют непарную базилярную артерию, питающие мозжечок и и другие отделы ствола, и две задние мозговые артерии, снабжающие кровью затылочные доли мозга. Каждая из задних мозговых артерий соединяется со средней мозговой артерией своей стороны при помощи задней соединительной артерии.

Таким образом, на основании мозга образуется артериальный круг большого мозга.

Более мелкие разветвления кровеносных сосудов в мягкой мозговой оболочке

достигают мозга, проникают в его вещество, где разделяются на многочисленные капилляры. Из капилляров кровь собирается в мелкие, а затем и крупные венозные сосуды. Кровь от головного мозга оттекает в синусы твердой мозговой оболочки. Из синусов кровь оттекает через яремные отверстия в основании черепа во внутренние яремные вены.

2. Кровоснабжение спинного мозга осуществляется через переднюю и задние спинномозговые артерии. Отток венозной крови идет через одноименные вены во внутреннее позвоночное сплетение, расположенное на всем протяжении позвоночного канала снаружи от твердой оболочки спинного мозга. Из внутреннего позвоночного сплетения кровь оттекает в вены, идущие вдоль позвоночного столба, а из них – в нижнюю и верхнюю полые вены.

Ликворная система мозга

Внутри костных полостей головной и спинной мозг находится во взвешенном состоянии и со всех сторон омываются спинномозговой жидкостью – ликвором . Ликвор предохраняет мозг от механических воздействий, обеспечивает постоянство внутричерепного давления, принимает непосредственное участие в транспорте питательных веществ из крови к тканям мозга. Спинномозговая жидкость продуцируется сосудистыми сплетениями желудочков мозга. Циркуляция ликвора по желудочкам осуществляется по следующей схеме: из боковых желудочков жидкость поступает через отверстие Монро в третий желудочек, а затем через сильвиев водопровод в четвертый желудочек. Из него ликвор переходит через отверстия Мажанди и Люшка в подпаутинное пространство. Отток спинномозговой жидкости в венозные синусы происходит через грануляции паутинной оболочки – пахионовы грануляции.

Между нейронами и кровью в головном и спинном мозге существует барьер, получивший название гематоэнцефалического , который обеспечивает избирательное поступление веществ из крови к нервным клеткам. Этот барьер выполняет защитную функцию, так как обеспечивает постоянство физико-химических свойств ликвора.

Медиаторы

Нейромедиаторы (нейротрансмиттеры, посредники) - биологически активные химические вещества, посредством которых осуществляется передача электрического импульса от нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

До 50-х годов XX столетия к медиаторам относили две группы низкомолекулярных соединений: амины (ацетилхолин, адреналин, норадреналин, серотонин, дофамин) и аминокислоты (гамма-аминомасляная кислота, глутамат, аспартат, глицин). Позже было показано, что специфическую группу медиаторов составляют нейропептиды, которые могут выступать также и в качестве нейромодуляторов (веществ, изменяющих величину ответа нейрона на стимул). В настоящее время известно, что нейрон может синтезировать и выделять несколько нейромедиаторов.

Кроме этого в нервной системе существуют особые нервные клетки – нейросекреторные, которые обеспечивают связь центральной нервной системы сэндокринной системой. Эти клетки имеют типичную для нейрона структурную и функциональную организацию. От нейрона их отличает специфическая функция – нейросекреторную, которая связана с секрецией биологически активных веществ. Аксоны нейросекреторных клеток имеют многочисленные расширения (тела Геринга), в которых временно накапливается нейросекрет. В пределах мозга эти аксоны, как правило, лишены миелиновой оболочки. Одной из основных функций нейросекреторных клеток является синтез белков и полипептидов и их дальнейшая секреция. В связи с этим в данных клетках чрезвычайно развит белоксинтезирующий аппарат - гранулярный эндоплазматический ретикулум, комплекс Гольджи, лизосомальный аппарат. По количеству нейросекреторных гранул в клетке можно судить об ее активности.