НЕПРЕРЫВНЫЕ ДРОБИ. Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби.

Например, последовательность 1, 1/2, 2/3, 3/4,..., n /(n + 1),... порождает непрерывную дробь

где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны

Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4,.... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2Ч 1 + 3Ч 3)/(2Ч 1 + 3Ч 2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3Ч 3 + 4Ч 11)/(3Ч 2 + 4Ч 8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x , первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x . Причем они поочередно оказываются то меньше, то больше числа x (нечетные – больше x , а четные – меньше).

Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4Ч 11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:

Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x – иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n 0 – наибольшее целое число, которое меньше x , то x = n 0 + (x n 0), где x n 0 – положительное число меньше 1, поэтому обратное ему число x 1 больше 1 и x = n 0 + 1/x 1 . Если n 1 – наибольшее целое число, которое меньше x 1 , то x 1 = n 1 + (x 1 – n 1), где x 1 – n 1 – положительное число, которое меньше 1, поэтому обратное ему число x 2 больше 1, и x 1 = n 1 + 1/x 2 . Если n 2 – наибольшее целое число, которое меньше x 2 , то x 2 = n 2 + 1/x 3 , где x 3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n 0 , 1/n 1 , 1/n 2 ,... непрерывной дроби, являющихся приближениями x .

Поясним сказанное на примере. Предположим, что , тогда

Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1,.... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.

Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x – радианная мера острого угла, то тангенс угла x x /1, - x 2 /3, - x 2 /7, - x 2 /9, ..., а если x – положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x /1, 1 2 x /2, 1 2 x /3, 2 2 x /4, 2 2 x /5, 3 2 x /6,... . Формальным решением дифференциального уравнения x 2 dy /dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x – 1!x 2 + 2!x 3 – 3!x 4 +.... Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x /1, x /1, 2x /1, 2x /1, 3x /1, 3x /1,..., а ее в свою очередь использовать для получения решения дифференциального уравнения x 2 dy /dx + y = 1 + x .

Рассмотрим последовательность

А что будет получаться при дальнейшем возрастании n? Существует ли предел Чему может равняться этот предел?

Рассмотрим положительное число х, определяемое как предел выражения


Перенесем единицу влево:


Это равенство равносильно такому:


откуда (х-1 (2+x-1) = 1 и, следовательно, или


Выражение в правой части называется цепной или непрерывной дробью. В общем виде ее можно записать так:


где а, b, с, d, вообще говоря, различные целые числа.

Если, начиная с некоторого места, повторяются одинаковые числа (или одинаковые конечные последовательности чисел), то непрерывная дробь называется периодической . Выше показано, что число может быть записано в виде периодической непрерывной дроби, хотя, как известно, это число, как и всякое другое иррациональное число, невозможно записать в виде десятичной периодической дроби .

Если десятичную периодическую дробь оборвать на каком-либо месте, мы получим ее приближенное значение (с недостатком). Например:

Оборвав непрерывную дробь, мы тоже получим ее приближенное значение в виде рационального числа. Мы видели, что и т. д. Эти дроби называют подходящими дробями для данной непрерывной дроби; в самом деле, каждая следующая подходящая дробь все ближе подходит к предельному значению данной дроби, или, иначе, дает все более точное приближение этого значения.

Можно доказать, что подходящие дроби четного порядка всегда меньше их предельного значения, а подходящие дроби нечетного порядка больше их предельного значения. Например, нетрудно проверить, что


В статье "О непрерывных дробях" (1737) Эйлер впервые указал приемы преобразования таких дробей и показал связь непрерывных периодических дробей с квадратными уравнениями и квадратическими иррациональностями. Там же показано выражение основания натуральных логарифмов, числа е * (е = 2,71828182845...), с помощью непериодической непрерывной дроби


* (Число е можно определить как . Оно играет, как и число π, важную роль в анализе и его приложениях. )

Вот еще некоторые простые разложения в непрерывные дроби, найденные Эйлером:


Разлагая в бесконечную цепную дробь е и е 2 , Эйлер, по существу, доказал иррациональность этих чисел, т. е. невозможность равенств , где m, n, р, q - произвольные натуральные числа.

Пользуясь этим, И. Г. Ламберт несколько лет спустя получил представление некоторых функций в форме бесконечных непрерывных дробей, например

- 88.50 Кб

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЛЕСНОГО ХОЗЯЙСТВА РФ

ФБОУ СПО «ДИВНОГОРСКИЙ ЛЕСХОЗ – ТЕХНИКУМ»

КАБИНЕТ МАТЕМАТИКИ

ОТЧЁТ

ПО ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ №

ПО ТЕМЕ «НЕПРЕРЫВНЫЕ ДРОБИ»

Выполнил:

Студент 1 курса гр. 11Б-Л Кардапольцев А.О.

Проверил:

Преподаватель: Коновалова Е.Г.

Оценка:

Введение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3

Непрерывная дробь- - - - - - - - - - - - - - - - - - - - - - - - - - 4

Разложение в цепную дробь - - - - - - - - - - - - - - - - - - - - 5

Приближение вещественных чисел рациональными - - 6

Историческая справка - - - - - - - - - - - - - - - - - - - - - - - - - 7

Заключение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

Библиографический список - - - - - - - - - - - - - - - - - - - - - - 9

Введение

Целью моей исследовательской работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.

Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.

Непрерывная дробь

Цепная дробь (или непрерывная дробь ) - это математическое выражение вида

где a 0 есть целое число и все остальные a n натуральные числа (то есть неотрицательные целые). Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально. Число представляется периодической цепной дробью тогда и только тогда, когда оно является квадратичной иррациональностью.

Разложение в цепную дробь

Любое вещественное число x может быть представлено (конечной или бесконечной) цепной дробью где

где обозначает целую часть числа x .

Для рационального числа x это разложение оборвётся по достижении нулевого x n для некоторого n . В этом случае x представляется конечной цепной дробью

Для иррационального x все величины x n будут ненулевыми и процесс разложения можно продолжать бесконечно. В этом случае x представляется бесконечной цепной дробью

Приближение вещественных чисел рациональными

Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел. А именно, если вещественное число x разложить в цепную дробь, то её подходящие дроби будут удовлетворять неравенству:

Отсюда, в частности, следует:

1) подходящая дробь является наилучшим приближением

для x среди всех дробей, знаменатель которых не превосходит q n ;

2) мера иррациональности любого иррационального числа не меньше 2.

Примеры

1) Разложим число π =3,14159265… в непрерывную дробь и подсчитаем его подходящие дроби: 3, 22/7, 333/106, 355/113, 103993/33102, …

Вторая дробь (22/7) - это известное Архимедово приближение. Четвёртая (355/113) была впервые получена в Древнем Китае.

2) В теории музыки требуется отыскать рациональное приближение для

Третья подходящая дробь: 7/12 позволяет обосновать классическое деление октавы на 12 полутонов .

Историческая справка

Античные математики умели представлять отношения несоизмеримых величин в виде цепочки последовательных подходящих отношений, получая эту цепочку с помощью алгоритма Евклида. По-видимому, именно таким путём Архимед получил приближение:

Это 12-я подходящая дробь для

Или от 4-й подходящей дроби для.

В V веке индийский математик Ариабхата применял аналогичный «метод измельчения» для решения неопределённых уравнений первой и второй степени. С помощью этой же техники было, вероятно, получено известное приближение для числа π (355/113). В XVI веке Рафаэль Бомбелли извлекал с помощью цепных дробей квадратные корни (см. его алгоритм).

Начало современной теории цепных дробей положил в 1613 году Пьетро Антонио Катальди. Он отметил основное их свойство (положение между подходящими дробями) и ввёл обозначение, напоминающее современное. Позднее его теорию расширил Джон Валлис, который и предложил термин «непрерывная дробь» . Эквивалентный термин «цепная дробь » появился в конце XVIII века.

Применялись эти дроби в первую очередь для рационального приближения вещественных чисел; например, Христиан Гюйгенс использовал их для проектирования зубчатых колёс своего планетария. Гюйгенс уже знал, что подходящие дроби всегда несократимы и что они представляют наилучшее рациональное приближение.

В XVIII веке теорию цепных дробей в общих чертах завершили Леонард Эйлер и Жозеф Луи Лагранж.

Заключение

Данная исследовательская работа показывает значение цепных дробей в математике.

Их можно успешно применить к решению неопределенных уравнений вида

ax+by=c.

Основная трудность при решении таких уравнений состоит в том, чтобы найти какое-нибудь его частное решение. Так вот, с помощью цепных дробей можно указать алгоритм для разыскания такого частного решения.

Цепные дроби можно применить и к решению более сложных неопределенных уравнений, например, так называемого уравнения Пелля:

().

Бесконечные цепные дроби могут быть использованы для решения алгебраических и трансцендентных уравнений, для быстрого вычисления значений отдельных функций.

В настоящее время цепные дроби находят все большее применение в вычислительной технике, ибо позволяют строить эффективные алгоритмы для решения ряда задач на ЭВМ.

Библиографический список:

http://ru.wikipedia.org

  1. Алгебра и теория чисел. Под редакцией Н.Я. Виленкина, М, “Просвещение”, 84.
  2. И.М. Виноградов. Основы теории чисел. М, “Наука”, 72.
  3. А.А. Кочева. Задачник-практикум по алгебре и теории чисел. М, “Просвещение”, 84.
  4. Л.Я. Куликов, А.И. Москаленко, А.А. Фомин. Сборник задач по алгебре и теории чисел. М, “Просвещение”, 93.

Е.С. Ляпин, А.Е. Евсеев. Алгебра и теория чисел. М, “Просвещение”,

Описание работы

Целью моей исследовательской работы является исследование теории цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Непрерывная дробь- - - - - - - - - - - - - - - - - - - - - - - - - - 4

Разложение в цепную дробь - - - - - - - - - - - - - - - - - - - - 5

Приближение вещественных чисел рациональными - - 6

Историческая справка - - - - - - - - - - - - - - - - - - - - - - - - - 7

Заключение - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8

Библиографический список - - - - - - - - - - - - - - -

НЕПРЕРЫВНЫЕ ДРОБИ
Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби. Например, последовательность 1, 1/2, 2/3, 3/4, ..., n/(n + 1), ... порождает непрерывную дробь

Где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны


Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4, ... . Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2*1 + 3*3)/(2*1 + 3*2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3*3 + 4*11)/(3*2 + 4*8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x, первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x. Причем они поочередно оказываются то меньше, то больше числа x (нечетные - больше x, а четные - меньше). Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4Ч11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:


Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x - иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n0 - наибольшее целое число, которое меньше x, то x = n0 + (x - n0), где x - n0 - положительное число меньше 1, поэтому обратное ему число x1 больше 1 и x = n0 + 1/x1. Если n1 - наибольшее целое число, которое меньше x1, то x1 = n1 + (x1 - n1), где x1 - n1 - положительное число, которое меньше 1, поэтому обратное ему число x2 больше 1, и x1 = n1 + 1/x2. Если n2 - наибольшее целое число, которое меньше x2, то x2 = n2 + 1/x3, где x3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n0, 1/n1, 1/n2, ... непрерывной дроби, являющихся приближениями x. Поясним сказанное на примере. Предположим, что

Max-width="" :="" height:="" auto="" width:="">
">


тогда



Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения
: 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для
имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1, ... . Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны. Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x - радианная мера острого угла, то тангенс угла x равен значению непрерывной дроби с неполными частными 0, x/1, -x2/3, -x2/7, -x2/9, ..., а если x - положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x/1, 12x/2, 12x/3, 22x/4, 22x/5, 32x/6, ... . Формальным решением дифференциального уравнения x2dy/dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x - 1!x2 + 2!x3 - 3!x4 + ... . Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x/1, x/1, 2x/1, 2x/1, 3x/1, 3x/1, ..., а ее в свою очередь использовать для получения решения дифференциального уравнения x2dy/dx + y = 1 + x.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НЕПРЕРЫВНЫЕ ДРОБИ" в других словарях:

    См. Дробь … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Данная статья часть обзора История математики. Научные достижения индийской математики широки и многообразны. Уже в древние времена учёные Индии на своём, во многом оригинальном пути развития достигли высокого уровня математических знаний.… … Википедия

    Раздел теории чисел, в к ром изучаются приближения нуля значениями функций от конечного числа целочисленных аргументов. Первоначальные задачи Д. п. касались рациональных приближений к действительным числам, но развитие теории привело к задачам, в … Математическая энциклопедия

    История науки … Википедия

    Данная статья часть обзора История математики. Арабский халифат (750 г.) Математика Востока, в отличие от древнегреческой математики, в … Википедия

    - (родился 14 мая 1821 года умер 26 ноября 1894 года в Петербурге) ординарный академик Императорской Академии Наук, действительный тайный советник. П. Л. Чебышев, профессор императорского С. Петербургского университета Тайный советник, доктор… … Большая биографическая энциклопедия

    Данная статья часть обзора История математики. Муза геометрии (Лувр) … Википедия

    Данная статья часть обзора История математики. Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э. Древнейшие древнеегипетские математические тексты относятся к началу II… … Википедия

Книги

  • Математическое просвещение , Бончковский Р.Н. , Этот сборник, как и предыдущие сборники «Математическое просвещение», содержит научные статьи по элементарной математике и простейшим вопросам высшей математики. Сборник рассчитан на весьма… Категория: Математика и естественные науки Серия: Издатель: ЁЁ Медиа ,
  • Математическое просвещение. Выпуск 7 , Бончковского Р. Н. , Этот сборник, как и предыдущие сборники «Математическое просвещение», содержит научные статьи по элементарной математике и простейшим вопросам высшей математики. Сборник рассчитан на весьма… Категория:

НЕПРЕРЫВНЫЕ ДРОБИ. Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби.

Например, последовательность 1, 1/2, 2/3, 3/4,..., n /(n + 1),... порождает непрерывную дробь

где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны

Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4,.... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2Ч 1 + 3Ч 3)/(2Ч 1 + 3Ч 2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3Ч 3 + 4Ч 11)/(3Ч 2 + 4Ч 8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x , первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x . Причем они поочередно оказываются то меньше, то больше числа x (нечетные – больше x , а четные – меньше).

Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4Ч 11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:

Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x – иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n 0 – наибольшее целое число, которое меньше x , то x = n 0 + (x n 0), где x n 0 – положительное число меньше 1, поэтому обратное ему число x 1 больше 1 и x = n 0 + 1/x 1 . Если n 1 – наибольшее целое число, которое меньше x 1 , то x 1 = n 1 + (x 1 – n 1), где x 1 – n 1 – положительное число, которое меньше 1, поэтому обратное ему число x 2 больше 1, и x 1 = n 1 + 1/x 2 . Если n 2 – наибольшее целое число, которое меньше x 2 , то x 2 = n 2 + 1/x 3 , где x 3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n 0 , 1/n 1 , 1/n 2 ,... непрерывной дроби, являющихся приближениями x .

Поясним сказанное на примере. Предположим, что , тогда

Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1,.... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.

Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x – радианная мера острого угла, то тангенс угла x x /1, - x 2 /3, - x 2 /7, - x 2 /9, ..., а если x – положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x /1, 1 2 x /2, 1 2 x /3, 2 2 x /4, 2 2 x /5, 3 2 x /6,... . Формальным решением дифференциального уравнения x 2 dy /dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x – 1!x 2 + 2!x 3 – 3!x 4 +.... Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x /1, x /1, 2x /1, 2x /1, 3x /1, 3x /1,..., а ее в свою очередь использовать для получения решения дифференциального уравнения x 2 dy /dx + y = 1 + x .