Антибиотики в таблетках представляют собой вещества, которые препятствуют росту микроорганизмов и, как следствие, убивают их. Используются для лечения патологий инфекционного характера. Могут быть 100% натуральными и полусинтетическими. Итак, какие лекарства относятся к антибиотикам?

Назначение антибиотиков универсального характера

Прописывание описываемых лекарственных средств оправдано в следующих случаях:

  1. Терапия подбирается на основе клинических симптомов, т.е. без определения возбудителя. Это актуально при активно протекающих недугах, например, менингите – человек может умереть буквально за пару часов, поэтому времени на сложные мероприятия нет.
  2. У инфекции не один, а несколько источников.
  3. Микроорганизм, являющийся причиной заболевания, невосприимчив к антибиотикам узкого спектра действия.
  4. Проводится комплекс профилактических мер после операции.

Классификация антибиотиков универсального характера

Рассматриваемые нами лекарственные средства можно разделить на несколько групп (с наименованиями):

  • пенициллины – Ампициллин, Амоксициллин, Тикарциллин;
  • тетрациклины – к ним относится препарат с одноименным названием;
  • фторхинолоны – Ципрофлоксацин, Левофлоксатин, Моксифлоксацин; Гатифлоксацин;
  • аминогликозиды – Стрептомицин;
  • амфениколы – Левомицетин;
  • карбапенемы — Имипенем, Меропенем, Эртапенем.

Это основной список.

Пенициллины

С открытием Бензилпенициллина ученые пришли к выводу, что микроорганизмы можно убить. Несмотря на то, что уже, как говорится, «много воды утекло», этот советский антибиотик не сбрасывается со счетов. Однако были созданы и другие пенициллины:

  • те, которые теряют свои качества, проходя через кислотно-щелочную среду ЖКТ;
  • те, которые не теряют свои качества, проходя через кислотно-щелочную среду ЖКТ.

Ампициллин и Амоксициллин

Отдельно следует остановиться на таких антибиотиках, как Ампициллин и Амоксициллин. По действию практически не отличаются друг от друга. Способны справиться с:

  • грамположительными инфекциями, в частности, стафилококками, стрептококками, энтерококками, листериями;
  • грамотрицательными инфекциями, в частности, кишечной и гемофильной палочкой, сальмонеллой, шигеллой, возбудителями коклюша и гонореи.

А вот фармакологические свойства у них разные.

Ампициллин характеризуется:

  • биодоступность – не более половины;
  • период выведения из организма – несколько часов.

Суточная доза варьируется в диапазоне от 1000 до 2000 мг. Ампициллин, в отличие от Амоксициллина, можно ввести парентерально. При этом инъекции могут делаться и внутримышечно, и внутривенно.

В свою очередь, Амоксициллин характеризуется:

  • биодоступность – от 75 до 90%; не зависит от приема еды;
  • период полувыведения – несколько дней.

Суточная доза варьируется в диапазоне от 500 до 1000 мг. Длительность приема – пять – десять дней.

Парентеральные пенициллины

Парентеральные пенициллины имеют одно важное преимущество перед Ампициллином и Амоксициллином – способность справиться с синегнойной палочкой. Она приводит к образованию гнойных ран и абсцессов, а также является причиной цистита и энтерита – инфицирования мочевого пузыря и кишечника соответственно.

В перечень самых распространенных парентеральных пенициллинов входит Тикарциллин, Карбенициллин, Пиперациллин.

Первый назначают при перитоните, сепсисе, септицемии. Эффективен в лечении гинекологических, дыхательных и кожных инфекций. Выписывается пациентам, у которых иммунная система находится в неудовлетворительном состоянии.

Второй назначают при наличии микроорганизмов в брюшной полости мочеполовой системы, костной ткани. Вводится внутримышечно и, в сложных случаях, внутривенно посредством капельницы

Третий назначают при гное в брюшной полости, мочеполовой системе, костной ткани, суставов и кожи.

Улучшенные пенициллины

Ампициллин и Амоксициллин становятся бесполезными при наличии бета-лактамаз. Но великие умы человечества нашли выход из этой ситуации – синтезировали улучшенные пенициллины. Помимо основного активного вещества в них есть ингибиторы бета-лактамаз, это:

  1. Амоксициллин с добавлением клавулановой кислоты. Дженерики – Амоксиклав, Флемоклав, Аугментин. Реализуется в инъекциях и в форме для введения перорально.
  2. Амоксициллин с добавлением сульбактама. В аптеках называется Трифамоксом. Реализуется в таблетках и в форме для введения перорально.
  3. Ампициллин с добавлением сульбактама. В аптеках называется Амписидом. Реализуется в инъекциях. Применяется в больницах, при заболеваниях, которые сложно распознать обычному человеку.
  4. Тикарциллин с добавлением клавулановой кислоты. В аптеках называется Тиментином. Реализуется в форме для введения перорально.
  5. Пиперациллин с добавлением тазобактама. В аптеках называется Тациллином. Доставляется инфузионно капельно.

Тетрациклины

Тетрациклины не восприимчивы к бета-лактамазам. И в этом они стоят на ступеньку выше, чем пенициллины. Тетрациклины уничтожают:

  • грамположительные микроорганизмы, в частности, стафилококков, стрептококков, листерий, клостридий, актиномицетов;
  • грамотрицательные микроорганизмы, в частности, кишечную и гемофильную палочку, сальмонеллу, шигеллу, возбудителей коклюша, гонореи и сифилиса.

Их особенностью является прохождение через оболочку клетки, что позволяет убивать хламидии, микоплазмы и уреаплазмы. Однако им не доступна синегнойная палочка и протей.

Обычно встречается Тетрациклин. Также в список входит Доксициклин.

Тетрациклин

Бесспорно, тетрациклин – один из самых эффективных антибиотиков. Но у него есть слабые стороны. В первую очередь, недостаточная активность при высокой вероятности изменения микрофлоры кишечника. По этой причине следует выбирать тетрациклин не в таблетках, а в форме мази.

Доксициклин

Доксициклин по сравнению с Тетрациклином достаточно активен при невысокой вероятности изменения микрофлоры кишечника.

Фторхинолоны

Первые фторхинолоны, такие как Ципрофлоксацин, Офлоксацин, Норфлоксацин, нельзя было назвать антибиотиками, относящимися к универсальным. Они были способны справиться только с грамотрицательными бактериями.

Современные же фторхинолоны, Левофлоксацин, Моксифлоксацин, Гатифлоксацин, являются антибиотиками универсального характера.

Недостаток фторхинолонов в том, что они препятствуют синтезу пептидогликана – своего рода строительного материала сухожилий. Вследствие этого они не разрешены лицам до 18 лет.

Левофлоксацин

Левофлоксацин выписывается при наличии микроорганизмов в дыхательных путях, бронхите и пневмонии, инфекции в ЛОР-органах, отите и синусите, при инфекции в коже, а также при заболеваниях желудочно-кишечного тракта и мочевыводящих путей.

Длительность приема – семь, иногда десять, дней. Доза – 500 мг за один раз.

В аптеках продается как Таваник. Дженериками являются Леволет, Глево, Флексил.

Моксифлоксацин

Моксифлоксацин выписывается при наличии микроорганизмов в дыхательных путях, ЛОР-органах, коже, а также в качестве профилактики после операции.

Длительность приема – от семи до десяти дней. Доза – 400 мг за один раз.

В аптеках продается как Авелокс. Дженериков мало. Основное действующее вещество входит в состав Вигамокса – капель для глаз.

Гатифлоксацин

Гатифлоксацин назначается при наличии микроорганизмов в дыхательных путях, ЛОР-органах, урогенитальном тракте, а также серьезных заболеваниях глаз.

Доза – 200 или 400 мг однократно.

В аптеках продается как Тебрис, Гафлокс, Гатиспан.

Аминогликозиды

Ярким представителем Аминогликозидов является Стрептомицин – препарат, о котором хотя бы раз в жизни слышал каждый человек. Он незаменим в лечении туберкулеза.

Аминогликозиды способны справиться с большинством грамположительных и грамотрицательных бактерий.

Стрептомицин

Отличается эффективностью. С его помощью можно вылечить не только туберкулез, но и такие заболевания, как чума, бруцеллез и туляремия. Что касается туберкулеза, то при использовании стрептомицина не важна локализация. Реализуется в уколах.

Гентамицин

Постепенно уходит в прошлое, так как является очень и очень спорным. Дело в том, что бывало повреждение слуха, вплоть до полной глухоты, чего совсем не ожидали врачи. При этом токсическое действие необратимо, т.е. после прекращения приема ничего не возвращается.

Амикацин

Амикацин назначается при перитоните, менингите, эндокардите, пневмонии. Реализуется в ампулах.

Амфениколы

В эту группу входит Левомицетин. Он назначается при брюшном тифе и паратифе, сыпном тифе, дизентерии, бруцеллезе, коклюше, кишечных инфекциях. Реализуется в форме инъекций и мази.

Карбапенемы

Карбапенемы предназначены для лечения тяжелых инфекций. Они способны справиться со многими бактериями, в том числе устойчивыми ко всем перечисленным выше антибиотикам.

Карбапенемом является:

  • Меропенем;
  • Эртапенем;
  • Имипенем.

Карбапенемы вводятся с привлечением специального дозатора.

Теперь вы знаете названия антибиотиков, какие лекарственные средства относятся к антибиотикам в таблетках, а какие – нет. Несмотря на это, ни при каких обстоятельствах не занимайтесь самолечением, а обратитесь за помощью к специалисту. Помните, что неправильный прием этих препаратов может серьезно подорвать здоровье. Будьте здоровы!

Карбапенемы состоят из В-лактамного кольца, соединенного с 5-членным, содержащим углерод пенемовым кольцом. Вслед за первыми двумя карбапенемами, имипенемом и меропенемом, был получен эртапенем, введенный в практику в США в 2002 г.
Карбапенемы - это бета-лактамы, обладающие бактерицидными свойствами в результате подавления синтеза клеточной стенки бактерий.

Из всех доступных антибиотиков обладают наиболее широким спектром действия и устойчивостью к большинству В- . Они активны против стрептококков, стафилококков, Enterohacteriaceae, P. aeruginosa, видов Haemophilus и анаэробных бактерий, в том числе В. fragilis. Карбапенемы действуют также на многие штаммы Епterococcus faecalis, но не на другие виды Enterococcus. Подобно цефалоспоринам, карбапенемы не обладают активностью против L. monocytogenes или стафилококков, резистентных к метициллину.

Имипенем метаболизируется в почках В-лактамазой человека, называемой дегидропептидазой-1, с образованием нейротоксического метаболита - специфического ингибитора почечной В-лактамазы. Эту проблему снимает циластатин (ингибитор пептидазы), вводимый вместе с имипенемом в определенном соотношении.

Меропенем и эртапенем не расщепляются почечной дегидропептидазой, поэтому одновременное использование циластатина не требуется. Из всех карбапенемов эртапенем обладает наиболее длительным Т1/2; эртапенем применяют 1 раз в день, тогда как имипенем - каждые 6 час, а меропенем - каждые 8 час. При почечной недостаточности дозы карбапенемов снижают, т.к. они выводятся почками.

Токсичность карбапенемов соответствует таковой других В-лактамов. Карбапенемы вызывают тошноту, рвоту и реакции гиперчувствительности с риском возникновения перекрестных реакций с другими В-лактамами. Имипенем способен вызывать судороги (частота 0,9%) у чувствительных пациентов, особенно страдающих почечной недостаточностью. Меропенем (но не имипенем) можно использовать для лечения бактериального менингита.

Карбапенемы эффективны при пневмониях, внутрибрюшных инфекциях, эндокардите, бактериемии и остеомиелите. Они особенно полезны при лечении инфекций, вызванных бактериями, резистентными к другим антибиотикам. Чрезвычайно широкий спектр действия карбапенемов дает возможность использовать их для лечения полимикробных инфекций вместо применения двух или более других антибиотиков.

Монобактамы - азтреонам

Термин «монобактам » применяют в качестве условного обозначения моноциклического антибиотика группы В-лактамов. Монолактамы состоят из одиночной кольцевой структуры, В-лактамного кольца, присоединенного к сульфоновой кислоте.
Азтреонам - единственный применяемый монобактам.

Азтреонам активен только против аэробных грамотрицательных бактерий, включая P. aeruginosa. В отличие от других В-лактамов азтреонам не действует на грамположительные бактерии, он неактивен против анаэробов. Азтреонам можно вводить только парентерально.

Особенное свойство азтреонама заключается в том, что он в сущности не относится к аллергенам и его можно применять у пациентов с аллергией к пенициллинам и/или цефалоспоринам.

В России применяются ИМПЕНЕМ и ПЕРОПЕНЕМ (МЕРОНЕМ) , в Японии – также биапенем и панипенем. Изучаются карбапенемы для приема внутрь – санфетринем и фаропенем.

Первый препарат группы карбопенемов – имипенем – появился в клинической практике в 1980 г. Он продуцируется микроорганизмами Streptomyces cattleya . Меропенем представляет собой стабильное производное имипенема. К настоящему времени известно более 40 природных и синтетических представителей карбапенемов.

Они характеризуются более высокой устойчивостью к действию бактериальных b-лактамаз по сравнению с пенициллинами и цефалоспоринами, обладают более широким спектром активности и применяются при тяжелых инфекциях различной локализации. Чаще они используются как препараты резерва, но при угрожающих жизни инфекциях могут быть рассмотрены в качестве первоочередной эмпирической терапии.

Имипенем вызывает эрадиакцию преимущественно грамположительных бактерий, меропенем в большей степени подавляет грамотрицательные бактерии, включая синегнойную палочку, ацинетобактер, бактероиды, возбудителей сапа и мелиоидоза.

Карбапенемы аналогично другим антибиотика группы β-лактамов оказывают бактерицидное действие, нарушая синтез клеточной стенки микроорганизмов. Они легче других β-лактамов проникают через порины клеточной стенки, так как имеют в молекуле положительный и отрицательный заряды, измененное положение атома серы и разветвленную боковую цепь.

Терапевтический эффект карбопенемов зависит не от максимальной концентрации, а от времени поддержания ее выше минимальной постоянной концентрации (МПК) для данного возбудителя. Необходимо поддерживать постоянную концентрацию антибиотиков в крови на уровне 2 – 4-кратных значений МПК. В связи с этим основное значение имеет не величина разовой дозы, а периодичность инъекций. Для карбапенемов типично длительное постантибиотическое действие в отношении грамотрицательных бактерий. Они препятствуют выделению бактериальных эндотоксинов, вызывающих инфекционно-токсический шок и другие гемодинамические нарушения.

Преимуществом меропенема является способность проникать в макрофаги и усиливать их фагоцитарную активность. Под влиянием меропенема ускоряется уничтожение фагоцитированных микроорганизмов.

Природная резистентность к карбапенемам характерна для флавобактерий, приобретенная резистентность возникает редко (выявена только у 7 штаммов синегнойной палочки).

Спектр активности. Карбапенемы активны в отношении грамположительных, грамотрицательных и анаэробных микроорганизмов.

К карбапенемам чувствительны стафилококки (кроме метициллинорезистентных), стрептококки, гонококки, менингококки, пневмококки (по активности в отношении пневмококков карбапенемы уступают ванкомицину).

Высокоактивны в отношении большинства грамотрицательных микроорганизмов (кишечная палочка, клебсиелла, протей, энтеробактер, цитробактер, морганелла), в том числе в отношении штаммов, устойчивых к цефалоспоринам III - IV поколения и ингибиторозащищенным пенициллинам. Несколько ниже активность в отношении протея, серрации.

Карбапенемы высокоактивны в отношении спорообразующих и неспорообразующих анаэробов.

Однако карбапенемы инактивируются под влиянием карбапенемаз. Карбапенемазы продуцируют шигеллы, ацинебактер, синегнойная палочка и другие бактерии. Известны вспышки гопитальных инфекций, вызванных граморицательными микроорганизмами, выделяющими карбапенемазы.

Вторичная устойчивость микроорганизмов к карбапенемам развивается редко. Для устойчивых микроорганизмов характерна перекрестная резистентность ко всем препаратам.

Комбинированный препарат ИМИПЕНЕМ/ЦИЛАСТАТИН (ТИЕ-НАМ) вводят в вену капельно, так как при инъекции болюса возникают тошнота и рвота.

Карбапенемы в минимальной степени (2%) связываются с белками крови, проникают во все ткани и среды организма, включая спинномозговую жидкость и некротизированную ткань поджелудочной железы. 70% их дозы выводится с мочой в неизмененном виде. Антибиотики удаляются из организма при гемодиализе.

Карбапенемы необходимы для эмпирической терапии тяжелых внебольничных и госпитальных инфекций, вызванных полирезистентной микрофлорой. В большинстве случаев монотерапия карбапенемами заменяет комбинированное применение 3 препаратов – цефалоспорина III генерации, аминогликозида и метронидазола. Эффективность лечения с помощью карбапенемов составляет 70 – 90%.

Показания к назначению следующие:

Госпитальная пневмония (в том числе у больных с искусственной вентиляцией легких);

Легочный сепсис при муковисцидозе;

Осложненные инфекции мочевыводящих путей;

Внебольничные и госпитальные интраабдоминальные инфекции (80% случаев – деструктивные поражения органов брюшной полости, 20% - оперативные вмешательства и травмы);

Гинекологические и акушерские инфекции;

Инфекции кожи, мягких тканей, костей и суставов;

Диабетическая стопа;

Нейтропеническая лихорадка;

Эндокардит, сепсис;

Менингит и абсцесс мозга (назначают только меропенем);

Профилактика инфекционных осложнений наркоза и периоперационных инфекций.

У 20% больных инъекции имипенема сопровождаются побочными эффектами – тошнотой, рвотой, диареей, аллергическими реакциями (в 50% случаев они являются перекрестными с другими β-лактамами). При заболеваниях центральной нервной системы и почечной недостаточности появляется риск тремора и судорог вследствие антагонизма с ГАМк. Меропенем переносится значительно лучше – не вызывает диспепсические нарущения и судороги.

Карбапенемы противопоказаны при гиперчувствительности к β-лактамным антибиотикам, беременности, младенцам до 3 мес. На период лечения отказываются от грудного вскармливания.

Вернуться к номеру

Карбапенемы в современной клинической практике

Резюме

Резистентность бактерий представляет собой серьезную проблему антибактериальной терапии и в этом плане может иметь тяжелые социальные по­следствия. По сообщению агентства Рейтер, в 2004 году в США погибло около 70 тыс. пациентов с нозокомиальными инфекциями, причем у половины из них инфекции были вызваны флорой, резистентной к антибиотикам, которые обычно применяются для лечения таких инфекций. Опубликованы данные о более высокой летальности пациентов с инфекциями, вызванными резистентной флорой . Имеются сведения о дополнительных затратах системы здравоохранения, связанных с резистентностью нозокомиальной флоры, которые, по некоторым оценкам, составляют от 100 миллионов до 30 миллиардов долларов в год .

Основными механизмами резистентности микроорганизмов являются продукция ферментов, которые инактивируют антибиотики; нарушение или изменение структуры рецепторов, с которыми необходимо связаться антибиотикам для подавления бактериального роста; снижение концентрации антибиотиков внутри бактерий, связанное с невозможностью их попадания внутрь бактериальных клеток из-за нарушения проницаемости внешней оболочки или активного выведения с помощью специальных насосов.

Резистентность к антибиотикам наблюдается повсеместно и имеет неблагоприятную тенденцию к повышению. К настоящему времени, кроме резистентности к определенному препарату или группе препаратов, выделяют полирезистентные бактерии, т.е. резистентные к основным группам антибактериальных препаратов (β-лактамам, аминогликозидам, фторхинолонам), и панрезистентные, против которых, согласно данным микробиологических исследований, не имеется активных антибиотиков.

История создания антибактериальных препаратов была непосредственно связана с решением определенных клинических задач: поиском препаратов с высокой природной активностью для подавления стрептококков (пенициллин, ампициллин), стафилококков (оксациллин), грамотрицательной флоры (аминогликозиды); преодолением побочных эффектов (аллергия к природным пенициллинам); повышением пенетрации антибиотиков в ткани и клетки (макролиды, фторхинолоны). Однако применение антибиотиков привело к активации процессов защиты микрофлоры от них. Поэтому при разработке препаратов, которые в настоящее время широко применяются в клинике, стала актуальной задача преодоления природной и приобретенной резистентности нозокомиальной флоры. Наиболее яркими представителями этой относительно новой генерации препаратов являются карбапенемы.

Разработка карбапенемов и их структурно- функциональные особенности

Подобно пенициллинам и цефалоспоринам карбапенемы имеют природный источник. Первый карбапенем — тиенамицин является продуктом Streptomyces cattleya. Основной структурой тиенамицина и последующих карбапенемов, подобно пенициллинам, является пятичленное β-лактамное кольцо. Химической особенностью карбапенемов, отличающей их от пенициллинов, является замена углерода азотом в 1-й позиции и наличие двойных связей между 2 и 3 атомами углерода, высокая устойчивость к гидролизу β-лактамного кольца в 6-й позиции и наличие тиогруппы во 2-й позиции пятичленного кольца. Считается, что последнее из перечисленных отличий связано с повышенной антисинегнойной активностью карбапенемов.

Первый из карбапенемов — имипенем появился в клинической практике в 1986 году. Для повышения стабильности этого препарата против почечной дигидропептидазы-1 имипенем стали комбинировать с ингибитором этого фермента — циластатином, что существенно улучшило его фармакокинетику в почках.

Меропенем появился в клинической практике в 1996 году. Основным химическим отличием от имипенема было наличие трансгидроксиэтильной группы в 6-м положении, которая определяла стабильность препарата к действию различных β-лактамаз, уникальность микробиологических и фармакологических характеристик. Появление боковой диметилкарбамилпирролидинтио-группы во 2-м положении пятичленного кольца резко повысило активность препарата против Pseudomonas aeruginosa и других важнейших грамотрицательных бактерий. Метильная группа в 1-й позиции создала стабильность препарата к действию почечной дигидропептидазы-1, что позволило использовать препарат без циластатина.

Эртапенем стал третьим препаратом в линейке карбапенемов в 2001 году. Подобно меропенему, он стабилен к почечной дигидропептидазе-1 и различным β-лактамазам. Химическим отличием этого препарата стало замещение метильной группы остатком бензойной кислоты во 2-й позиции пятичленного кольца, что резко повысило его связывание с белками плазмы. Этот показатель достигает 95 %, у имипенема — 20 % и 2 % — у меропенема. В результате этого увеличился период полувыведения препарата из плазмы, появилась возможность его введения 1 раз в сутки. Модификация химической структуры оказала негативное влияние на его активность в отношении неферментирующих грамотрицательных бактерий, таких как Pseudomonas aeruginosa и Acinetobacter baumannii . В отношении Psedomonas aeruginosa предполагается, что существенное изменение заряда, увеличение молекулярного веса и липофильности нарушило пенетрацию эртапенема через мембранный пориновый канал (OprD), который является важнейшим порталом для пенетрации карбапенемов .

В 2010 году появился новый карбапенем — дорипенем. Его химическая структура напоминает меропенем и эртапенем, отличается наличием сульфаммониламинометилпирролидинтиогруппы во 2-й позиции пятичленного кольца. Это изменение привело к повышению активности против Staphylococcus aureus, при этом активность против грамположительной флоры существенно не изменилась по сравнению с меропенемом .

Механизм действия и значение пенициллинсвязывающих белков

Карбапенемы, как и другие β-лактамные антибиотики, являются бактерицидными ингибиторами синтеза клеточной стенки благодаря их связыванию с пенициллинсвязывающими белками (ПСБ). ПСБ — это цитоплазматические белки клеточной стенки, завершающие синтез пептидогликана — скелета клеточной стенки. Карбапенемы связываются со всеми основными ПСБ грамотрицательных бактерий. Основным отличием связывания с ПСБ карбапенемов и других β-лактамов является высокая аффинность к ПСБ-1а и -1b Pseudomonas aeruginosa и E.coli, что приводит к быстрому киллингу бактерий, увеличивает количество погибших бактерий. Среди карбапенемов, в свою очередь, имеются различия в аффинности к ПСБ-2 и -3 грамотрицательных бактерий. Имипенем имеет большее сродство к ПСБ-2 по сравнению с ПСБ-3. Это приводит к тому, что до возникновения лизиса бактерии приобретают сферическую или эллипсовидную форму. Однако аффинность к ПСБ-2 и -3 Pseudomonas aeruginosa одинаковая. Аффинность меропенема и эртапенема к ПСБ-2 и -3 E.coli значительно выше, чем у имипенема. Точно так же аффинность к ПСБ-2 Pseudomonas aeruginosa у меропенема выше, чем у имипенема, однако в отношении ПСБ-3 она выше в 3-10 раз. Аффинность к ПСБ-2, -3 у меропенема и дорипенема одинаковая . При этом имеются индивидуальные различия микробных штаммов в аффинности ПСБ к различным карбапенемам.

Фармакодинамические особенности карбапенемов

В большей степени зависят от кратности введения препаратов, чем от концентрации в крови, что отличает их от аминогликозидов и фторхинолонов, эффективность которых напрямую связана с концентрацией препарата в плазме. Максимальный бактерицидный эффект карбапенемов наблюдается при достижении концентрации в плазме, превышающей минимальную подавляющую концентрацию (МПК) в 4 раза . В отличие от карбапенемов эффективность аминогликозидов и фторхинолонов возрастает пропорционально их концентрации в плазме и может быть ограничена только максимально разрешенной разовой дозой препарата .

Важнейшим фармакодинамическим показателем карбапенемов является отношение времени, когда концентрация препарата превышает МПК, ко времени между введениями препарата. Этот показатель выражается в процентах (T > МПК %). Теоретически идеально было бы поддерживать концентрацию карбапенема все 100 % интервала между введениями препарата. Однако это не обязательно для достижения оптимального клинического результата . Более того, этот интервал является разным у различных β-лактамных антибиотиков. Для достижения бактериостатического эффекта антибиотика необходим показатель 30-40 % для пенициллинов и цефалоспоринов и 20 % — для карбапенемов. Для достижения максимального бактерицидного эффекта необходимо достижение показателя 60-70 % для цефалоспоринов, 50 % — для пенициллинов и 40 % — для карбапенемов . Несмотря на то что пенициллины, цефалоспорины и карбапенемы убивают бактерии с помощью одного механизма, различия в показателях T > МПК отражают различия в быстроте киллинга, который наименее быстрый у цефалоспоринов и наиболее быстрый — у карбапенемов . Молекулярными причинами различия этого процесса у цефалоспоринов и карбапенемов может быть различная аффинность этих препаратов к ПСБ-1а и -1b.

Другой важной характеристикой этих препаратов является продолжительность постантибиотического эффекта (ПАЭ). ПАЭ — это эффект препарата, который продолжается после его удаления из системы. Среди β-лактамов ПАЭ наиболее часто наблюдается у карбапенемов. ПАЭ имипенема против некоторых микробов, включая P. aeruginosa, продолжается 1-4,6 часа . Необходимо отметить, что этот показатель может существенно варьировать среди штаммов, принадлежащих к одному роду. У меропенема ПАЭ подобен имипенему . Продолжительность ПАЭ эртапенема в отношении грамположительных бактерий составляет 1,4-2,6 часа. У дорипенема ПАЭ против S.aureus, K.pneumoniae, E.coli и P.aeruginosa наблюдался около 2 часов, причем только в отношении штаммов S.aureus и P.aeruginosa .

Спектр активности и клиническая эффективность

Карбапенемы имеют наиболее широкий спектр активности среди всех антибактериальных препаратов. Они активны против грамположительных и грамотрицательных микробов, включая аэробов и анаэробов. Показатель МПК50 позволяет оценить их природную активность и резистентность, по этому показателю они сходны с фторхинолонами и аминогликозидами. У некоторых бактерий отсутствует природная чувствительность к карбапенемам, например у S.maltophila, B.cepacia, E.faecium и резистентных к метициллину стафилококков . Имеются определенные различия между карбапенемами по природной активности, что может быть связано с нарушением пенетрации препаратов через клеточную мембрану и активности эффлюксных насосов. Данные по сравнительной активности всех 4 препаратов в отношении одних и тех же клинических штаммов микробов очень ограниченны. Однако имеются экспериментальные данные глобальных сравнительных исследований активности этих препаратов, которые также не являются исчерпывающими . Например, в одном из них нет сравнительной оценки определенных значений МПК: минимальная концентрация для дорипенема и меропенема составила 0,008 мкг/мл, для эртапенема — 0,06 мкг/мл, а для имипенема — 0,5 мкг/мл, поэтому у 3023 штаммов E.coli сравнение МПК90 оказалось возможным только при указанных выше показателях. Тем не менее имеются данные прямого сравнения МПК дорипенема, меропенема и имипенема в отношении энтеробактерий, P.aeruginosa, Haemophylus influenza и Bordetella pertussis, которые указывают на их сходную природную активность по показателю МПК50, который был аналогичным или отличался на одно-двукратное разведение . Только в отношении Proteus mirabilis активность меропенема была в 4 раза выше, чем активность дорипенема, и оба препарата оказались достоверно активнее имипенема, эти же тенденции сохранились и в отношении МПК90. Все три препарата оказались одинаково активными против чувствительных и резистентных к пенициллину S.pneumoniae. Резистентность, связанная с модификацией пенициллинсвязывающих белков, оказывала достоверное влияние на активность карбапенемов: МПК50 и МПК90 резистентных к пенициллину штаммов оказались в 32-64 раза выше, чем у чувствительных, при этом МПК90 оставалась ниже 1 мкг/мл. Дорипенем имел сходную с имипенемом активность против S.aureus и E.faecalis. Против чувствительных к цефтазидиму энтеробактерий, которые не продуцировали β-лактамаз расширенного спектра (БЛРС), активность эртапенема, меропенема и дорипенема была равной и превосходила таковую имипенема. Однако активность эртапенема была существенно ниже против неферментирующей грамотрицательной флоры (P.aeruginosa, A.baumannii) . В отношении S.pneumoniae, S.aureus, S.epidermidis и E.faecalis активность карбапенемов была примерно одинаковой, включая эртапенем. В отношении грамположительных и грамотрицательных анаэробов активность карбапенемов также была одинаковой с МПК50 1 мкг/мл и ниже.

Карбапенемы и механизмы резистентности

Резистентность к β-лактамам имеется у грамотрицательных и грамположительных микроорганизмов. У грамположительных бактерий не имеется механизмов резистентности, связанных с изменением свойств внешней мембраны, или ферментов, способных разрушать карбапенемы. Появление резистентности грамположительных бактерий связано с изменением пенициллинсвязывающих белков (ПСБ), например с появлением ПСБ-2а с низкой аффинностью ко всем β-лактамам у резистентных к метициллину S.aureus (MRSA). У грамотрицательных бактерий наличие внешней мембраны и различных β-лактамаз приводило к появлению резистентности, связанной с продукцией инактивирующих ферментов (β-лактамаз), нарушением структуры ПСБ, снижением накопления препарата в перипластическом пространстве из-за снижения проницаемости белков-поринов внешней мембраны или эффлюксных насосов, выводящих различные антибиотики из микробной клетки. Из них наибольшее значение имеет продукция β-лактамаз и снижение клеточной проницаемости.

Бета-лактамазы расширенного спектра и класса AmpC

Продукция β-лактамаз является наиболее частым механизмом резистентности грамотрицательных бактерий. Расположение гидроэтилгруппы в положении 6 определяет высокую стабильность карбапенемов по сравнению с цефалоспоринами и пенициллинами к гидролизу β-лактамазами , в особенности цефалоспориназами (БЛРС и AmpC). Поэтому реальным отличием карбапенемов от других β-лактамных антибиотиков является именно стабильность к действию БЛРС и AmpC.

AmpC — цефалоспориназы с широким спектром активности, разрушающие пенициллины (в том числе защищенные) и большинство цефалоспоринов. Необходимым условием разрушения антибиотиков является высокий уровень продукции этого фермента микробом. У P.aeruginosa и многих энтеробактерий (E.coli, K.pneumoniae) в хромосомах содержится информация о синтезе AmpC, однако синтез начинается при определенных условиях — при контакте с антибиотиком. Такой характер образования и выделения фермента называется индуцибельным. Однако при наличии врожденной предрасположенности к гиперпродукции фермента в результате мутации может происходить его депрессия . Цефалоспориназы AmpC имеются на плазмидах некоторых энтеробактерий, наиболее часто они встречаются у K.pneumoniae и E.coli . Некоторые передающиеся плазмидами AmpC могут иметь индуцибельный фенотип. Вне зависимости от того, является ли AmpC хромосомной или плазмидной, ее гиперпродукция у энтеробактерий и P.aeruginosa приводит к резистентности почти ко всем β-лактамам. Тем не менее многие энтеробактерии — гиперпродуценты AmpC остаются чувствительными к цефепиму и карбапенемам, а большинство P.aeruginosa — гиперпродуцентов AmpC оказываются чувствительными к имипенему, меропенему и дорипенему.

Продукция БЛРС является вторым механизмом резистентности к β-лактамам. Продукция этих ферментов приводит к резистентности к пенициллинам и цефалоспоринам . Источником этих ферментов для энтеробактерий оказалась Kluyvera spp. . Необходимо отметить, что этот тип β-лактамаз может быть подавлен ингибиторами β-лактамаз (сульбактам, тазобактам, клавулановая кислота), поэтому защищенные пенициллины и цефалоспорины могут сохранять свою активность в отношении продуцентов БЛРС. Однако карбапенемы считаются препаратами выбора для лечения инфекций, вызванных энтеробактериями — продуцентами БЛРС . Показано, что E.coli и K.pneumoniae остаются чувствительными ко всем карбапенемам, за исключением эртапенема, и МПК90 достоверно не изменяется. МПК90 эртапенема у продуцентов БЛРС оказывается примерно в 4 раза выше, чем у «диких» штаммов .

Карбапенемазы

Кроме БЛРС и AmpC, некоторые бактерии имеют ферменты (карбапенемазы), информация о которых кодирована на хромосоме или плазмидах . Такие ферменты способны продуцировать некоторые энтеробактерии, P.aeruginosa и Acinetobacter spp. Карбапенемазы представляют сложную проблему для лечения тяжелых инфекций карбапенемами, однако прямой корреляции между продукцией карбапенемаз и резистентностью к карбапенемам выявить не удалось. Одним из объяснений этого факта является различие гидролитической активности карбапенемаз в отношении различных субстратов, каковыми являются различные препараты карбапенемов . Другими причинами могут быть одновременное снижение пенетрации через бактериальную стенку (изменение структуры пориновых белков) или недоступность целевых пенициллинсвязывающих белков (наличие карбапенемаз в перипластическом пространстве). При наличии продукции карбапенемаз в клинических ситуациях не следует применять карбапенемы для лечения инфекций, вызванных такими микробами.

Резистентность, связанная с поринами

Снижение пенетрации внутрь бактериальной клетки является одним из механизмов резистентности к карбапенемам у энтеробактерий . Наиболее хорошо изучена резистентность P.aeruginosa, связанная с изменением структуры порина OprD, который осуществляет пассивный захват основных аминокислот и коротких пептидов, но также служит каналом для карбапенемов . Именно этот механизм резистентности характерен для карбапенемов и не влияет на чувствительность к другим β-лактамным АБ. У P.aeruginosa этот механизм связан с рядом генетических механизмов и приводит к повышению МПК имипенема в 4-16 раз, меропенема — в 4-32 раза, дорипенема — в 8-32 раза . Несмотря на кажущееся преимущество имипенема, его МПК становится выше уровня, который рассматривается как чувствительный (4 мкг/мл), а МПК дорипенема и меропенема остаются ниже 4 мкг/мл .

Резистентность P.aeruginosa, связанная с эффлюксом

У потенциально резистентных P.aeruginosa в хромосоме имеются гены, кодирующие информацию о нескольких эффлюксных насосах, выводящих из клетки различные антибиотики. Наиболее изученными являются Mex-OprM, MexCD-OprJ, MexEF-OprN и MexXY. Эти насосы способны выкачивать из цитоплазмы и перипластического пространства клетки различные препараты. В результате изучения этих насосов открылись перспективы разработки новых антибактериальных препаратов, способных контролировать процесс их работы. С учетом этого стала понятной необходимость отдельного рассмотрения их роли в резистентности к имипенему, меропенему и дорипенему у P.aeruginosa.

Точно не установлены насосы, выводящие имипенем. Однако показано, что при высокой экспрессии двух эффлюксных насосов (MexCD-OprJ и MexEF-OprN) происходит значительное снижение чувствительности P.aeruginosa к имипенему. Показано, что этот механизм не связан с комбинацией β-лактамазной активности AmpC и OprD . В то же время высокая экспрессия MexCD-OprJ и MexEF-OprN приводит к достоверному снижению чувствительности к имипенему за счет снижения экспрессии OprD .

В отличие от имипенема меропенем является подходящим субстратом для эффлюксных насосов: показано, что он выводится из клеток с помощью MexAB-OprM, MexCD-OprJ и MexEF-OprN . По данным других исследований, только гиперпродукция MexAB-OprM определяет резистентность к меропенему . Влиянием этого механизма объясняется различие в резистентности к имипенему и меропенему штаммов P.aeruginosa, имеющих такие насосы. Важно отметить, что повышенная продукция MexAB-OprM не обязательно приводит к подъему МПК выше уровня чувствительности , однако свидетельствует о вероятном взаимодействии этого механизма с другими (например, резистентности, связанной с OprD) и поэтому имеет важное клиническое значение. В отношении дорипенема показано, что он является субстратом для MexAB-OprM, MexCD-OprJ и MexEF-OprN эффлюксных насосов, более подробных сведений в литературе нет . Таким образом, взаимодействие механизмов, связанных с выведением, нарушением проницаемости, β-лактамазной активности и доступности ПСБ приводит к клинически значимой резистентности к карбапенемам.

Дозирование и клиническая фармакокинетика

Все карбапенемы являются водорастворимыми веществами и вводятся внутривенно или внутримышечно из-за низкого всасывания из желудочно-кишечного тракта. Основные дозировки препаратов представлены в табл. 1.

Величина связывания с белками является важным показателем фармакокинетики и антибактериальной активности препаратов. Фармакодинамический анализ антибактериальных препаратов требует учета связывания с белками и обсуждения кинетики именно «свободного» препарата. Как показано в табл. 1, связывание с белками имипенема (20 %), дорипенема (8 %) и меропенема (3 %) существенно различается . Изменение структуры эртапенема существенно повысило дозозависимое связывание с белками: до 95 % при концентрации в плазме ниже 100 мг/л и 85 % — выше 300 мг/л. Высокая связь с белками приводит к более продолжительному выведению: период полувыведения эртапенема составляет 4 часа по сравнению с 1 часом для других карбапенемов. Фармакокинетический профиль «свободного» препарата после введения дозы 500 мг показывает его эквивалентность у имипенема, меропенема и эртапенема. При этом преимущественно почечный клиренс препарата наблюдается у имипенема, меропенема и дорипенема.

Из-за продолжительного периода полувыведения эртапенем является единственным карбапенемом, который вводится 1 раз в сутки (500 мг или 1 г) . Меропенем вводится по 500 мг или 1 г через 8 часов, а имипенем по 500 мг или 1 г через 6-8 часов. Снижение почечного клиренса требует снижения дозировки препаратов, однако при применении эртапенема этот клиренс должен быть ниже 30 мл/мин, при применении меропенема — ниже 51 мл/мин. Судорожный потенциал имипенема требует особого внимания при выборе дозировки препарата с учетом функции почек и массы тела. Снижение дозировки имипенема должно начинаться после снижения клиренса ниже 70 мл/мин и у пациентов с массой тела менее 70 кг.

Как было указано ранее, эффективность карбапенемов зависит от продолжительности интервалов между введениями препарата, когда его концентрация выше МПК. Оптимизация фармакодинамических показателей может быть достигнута с помощью введения более высокой дозы, укорочения периода между введениями и увеличения продолжительности инфузии препарата . Наиболее привлекательным методом является увеличение продолжительности инфузии, т.к. это позволяет оптимизировать фармакодинамические показатели без существенного увеличения экономических затрат. Однако продолжительность инфузии лимитирована стабильностью препарата в растворе: меропенем и имипенем при комнатной температуре должны быть введены в течение 3 часов; стабильность дорипенема достигает 12 часов . В настоящее время продолжительная инфузия карбапенемов может рассматриваться в отношении меропенема и дорипенема. Однако максимально разрешенной дозировкой меропенема являются 6 г препарата в сутки, а дорипенема — 1,5 г/сут. Для оптимизации фармакодинамических показателей необходимо применение максимальной дозы и продолжительной инфузии препарата. Фармакодинамическое моделирование показало, что применение меропенема в дозе 6 г в сутки и 3-часовой инфузии создает условия для подавления флоры, которая интерпретируется при микробиологическом тестировании, как резистентная (до 64 мкг/мл). Возможность применения дорипенема в таких ситуациях -ограничивается его низкой разрешенной суточной дозой (1,5 г).

Карбапенемы и судороги

Все β-лактамы способны вызывать судороги, особенно при неправильном дозировании в условиях нарушения функции почек или низкой массе тела, определенной хронической патологии или повышенной судорожной активности . Повышение судорожной активности было выявлено еще в процессе проведения III фазы клинического исследования имипенема, а позже — меропенема и эртапенема . Различные механизмы могут приводить к возникновению судорог, однако для карбапенемов основным механизмом является подавление рецепторов GABAa . Показано, что боковая цепь во 2-м положении 5-членого кольца карбапенемов является ответственной за это осложнение. Причем при наиболее высокой концентрации (10 ммоль/л) имипенем подавляет 95 % GABAа рецепторов, связывающих 3Н-мусцимол, меропенем подавляет 49 %, а дорипенем — 10 % . Этим механизмом объясняется возникновение судорог у 1,5-6 % пациентов, получавших имипенем . При ретроспективном исследовании дозозависимого эффекта было показано значение низкой массы тела, сниженной функции почек, наличия судорог в анамнезе, наличия другой патологии ЦНС и высоких доз имипенема/циластатина, которые нужно рассматривать в качестве факторов риска возникновения судорог . Избыточной дозой имипенема/циластатина является та, которая превышает рекомендуемую дневную дозу на 25 %, и обычная доза у пациентов с нарушением функции почек или сопутствующей патологией ЦНС. Тщательный контроль дозирования препарата позволил снизить частоту возникновения судорог до уровня, который наблюдается при применении меропенема и эртапенема (~0,5 %) .

Заключение

Карбапенемы в настоящее время -остаются наиболее надежными препаратами для лечения нозокомиальных инфекций у тяжелых пациентов, особенно в случаях инфекций, вызванных резистентной флорой. С учетом современных тенденций роста и распространения резистентности нозокомиальной флоры карбапенемы являются основными препаратами для лечения инфекций, вызванных резистентными грамотрицательными микробами (энтеробактериями, P.aeruginosa, Acinetobacter spp.). Разрешенные суточные дозы и возможность продленной инфузии позволяют рассматривать меропенем как единственный препарат, фармакодинамика которого может быть оптимизирована для подавления флоры, которая с микробиологических позиций определяется резистентной к меропенему и другим карбапенемам.


Список литературы

1. Chow J.W. et al. // Ann. Intern. Med. — 1999. — 115. — 585-590.
2. Holmberg S.D. et al. // Rev. Infect. Dis. — 1987. — 9. — 1065-1078.
3. Phelps C.E. // Med. Care. — 1989. — 27. — 193-203.
4. Firtsche T.R. et al. // Clin. Microbiol. Infect. — 2005. — 11. — 974-984.
5. Ge Y. et al. // Antimicrob. Agents Chemother. — 2004. — 48. — 1384-1396.
6. Jones R.N. et al. // J. Antimicrob. Chemother. — 2004. — 54. — 144-154.
7. Hammond M.L. // J. Antimicrob. Chemother. — 2004. — 53 (Suppl. 2). — ii7-ii9.
8. Kohler T.J. et al. // Antimicrob. Agents Chemother. — 1999. — 43. — 424-427.
9. Iso Y. et al. // J. Antibiot. — 1996. — 49. — 199-209.
10. Davis T.A. et al. // ICAAC. — 2006 (Abstract C1-0039).
11. Fujimura T. et.al. // Jpn. J. Chemo-ther 2005. — 53 (Suppl. 1). — 56-69.
12. Craig W. // Diagn. Microbiol. Infect Dis. — 1995. — 22. — 89-96.
13. Craig W. // Clin. Infect. Dis. — 1998. — 26. — 1-12.
14. Craig W. // Scand. J. Infect. Dis. — 1991. — 74. — 63-70.
15. Wogelman D. et al. // J. Infect. Dis. — 1985. — 152. — 373-378.
16. Roosendaal R. et al. // J. Infect. Dis. — 1985. — 152. — 373-378
17. DeRyke C.A. et al. // Drug. — 2006. — 66. — 1-14.
18. Hanberger H. et al. // Eur. J. Clin Microbiol. Infect. Dis. — 1991. — 10. — 927-934.
19. Bustamante C.I. et al. // Antimicrob. Agents Chtmother. — 1984. — 26. — 678-683.
20. Gudmundsson S. et al. // J. Antimicrob. chemother. — 1986. — 18. — 67-73.
21. Nadler H.L. et al. // J. Antimicrob. chemother. — 1989. — 24 (Suppl. 1). — 225-231.
22. Odenholt I. // Expert Opin. Investig. Drugs. — 2001. — 10. — 1157-1166.
23. Totsuka K., Kikuchi K. // Jap. J. Chemother. — 2005. — 53 (Suppl.1). — 51-55.
24. Livermore D.M. et al. // J. Antimicrob. chemother. — 2003. — 52. — 331-344.
25. Pryka R.D., Haig G.M. // Ann. Pharmacother. — 1994. — 28. — 1045-1054.
26. Jones R.N. // Am J. Med. — 1985. — 78 (Suppl. 6A). — 22-32.
27. Brown S.D., Traczewski M.M. // J. Antimicrob. chemother. — 2005. — 55. — 944-949.
28. Tsuji et al. // Antimicrob. Agents Chemother. — 1998. — 42. — 94-99.
29. Cassidy P.J. // Dev. Ind. Microbiol. — 19881. — 22. — 181-209.
30. Miyashita K. et al. // Bioorg. Med. Chem. Lett. — 1996. — 6. — 319-322.
31. Hanson N.D., Sanders C.C. // Curr. Pharm. Des. — 1999. — 5. — 881-894.
32. Hanson N.D. // J Antimicrob. chemother. — 2003. — 52. — 2-4.
33. Perez F., Hanson N.D. // J. Antimicrob. chemother. — 2002. — 40. — 2153-2162.
34. Jacoby G.A. // Antimicrob. Agents Chemother. — 2006. — 50. — 1123-1129.
35. Bradford P.A. // Clin Microbiol. Rev. — 2001. — 14. — 933-951.
36. Jacoby G.A. // Eur J. Clin. Microbiol. Infect. Dis. — 1994. — 13 (Suppl. 1). — 2-11.
37. Bonnet R. // Antimicrob. Agents Chemother. — 2004. — 48. — 1-14.
38. Bradford P.A. et al. // Clin. Infect. Dis. — 2004. — 39. — 55-60.
39. Jones R.N. et al. // Diag. Microbiol. Infect. Dis. — 2005. — 52. — 71-74.
40. Bonfigio G. et al. // Expert Opin. Investig. Drugs. — 2002. — 11. — 529-544.
41. Livermore D.M. et al. // Antimicrob. Agents Chemother. — 2001. — 45. — 2831-2837.
42. Mushtag S. et al. // Antimicrob. Agents Chemother. — 2004. — 48. — 1313-1319.
43. Koh T.N. et al. // Antimicrob. Agents Chemother. — 2001. — 45. — 1939-1940.
44. Jacoby G.A. et al. // Antimicrob. Agents Chemother. — 2004. — 48. — 3203-3206.
45. Mertinez-Martinez L. et al. // Antimicrob. Agents Chemother. — 1999. — 43. — 1669-1673.
46. Trias J., Nikaido H. // Antimicrob. Agents Chemother. — 1990. — 34. — 52-57.
47. Trias J., Nikaido H.J. // Biol. Chem. — 1990. — 265. — 15680-15684.
48. Wolter D.J. et al. // FEMS Microbiol. Lett. — 2004. — 236. — 137-143.
49. Yoneyama H., Nakae T. // Antimicrob. Agents Chemother. — 1993. — 37. — 2385-2390.
50. Ochs M.M. et al. // Antimicrob. Agents Chemother. — 1999. — 43. — 1085-1090.
51. Sakyo S. et al. // J. Antibiol. — 2006. — 59. — 220-228.
52. Lister P. // Antimicrob. Agents Chemother. — 2005. — 49. — 4763-4766.
53. Fukuda H. et al. // Antimicrob. Agents Chemother. — 1995. — 39. — 790-792.
54. Lister P., Wilter D.J. // Clin/ Infect. Dis. — 2005. — 40. — S105-S114.
55. Masuda N. et al. // Antimicrob. Agents Chemother. — 1995. — 39. — 645-649.
56. Masuda N. et al. // Antimicrob. Agents Chemother. — 2000. — 44. — 3322-3327.
57. Physicians’ Desk Reference. — Thomson, 2005.
58. Mattoes H.M. et al. // Clin Ther. — 2004. — 26. — 1187-1198.
59. Psathas P. et al. // American Society of Health-System Pharmacists. — San Francisco, 2007. — Abst 57E.
60. Calandra G.B. et al. // Am J. Med. — 1988. — 84. — 911-918
61. De Sarro A. et al. // Neuropharmacology. — 1989. — 28. — 359-365.
62. Williams P.D. et al. // Antimicrob. Agents Chemother. — 1988. — 32. — 758-760.
63. Barrons R.W. et al. // Ann. Pharmacother. — 1992. — 26. — 26-29.
64. Lucasti C. et al. // Europ. Cong. Clin. Microbiol. Infect. Dis. — 2007. — Abstr. P834
65. Day L.P. et al. // Toxicol. Lett. — 1995. — 76. — 239-243.
66. Shimuda J. et al. // Drug Exp. Clin. Res. — 1992. — 18. — 377-381.
67. Horiuchi M. et al. // Toxicology. — 2006. — 222. — 114-124.
68. Job M.I., Dretler R.H. // Ann. Pharmacother. — 1990. — 24. — 467-469.
69. Pestotnik S.L. et al. // Ann. Pharmacother. — 1993. — 27. — 497-501.
70. Rodloff A.C. et al. // J. Antimicrob. Chemother. — 2006. — 58. — 916-929.
71. Kearing G.M., Perry C.M. // Drugs. — 2005. — 65. — 2151-2178.

АНТИБИОТИКИ-КАРБАПЕНЕМЫ

МЕРОПЕНЕМ (Mcropenem)

Синонимы: Меронем.

Фармакологическое действие. Антибиотик группы карбапенемов широкого спектра действия. Действует бактерицидно (уничтожает бактерии), нарушая синтез клеточной стенки бактерий. Активен в отношении многих клинически значимых грамположительных и грамотрицательных аэробных (развивающихся только в присутствии кислорода) и анаэробных (способных существовать в отсутствии кислорода) микроорганизмов, в том числе штаммов, продуцирующих бета-лактамазы (ферменты, разрушающие пенициллины).

Показания к применению. Бактериальные инфекции, вызванные чувствительными к препарату возбудителями: инфекции нижних отделов дыхательных путей и легких; инфекции мочеполовой системы, включая осложненные инфекции; инфекции органов брюшной полости; гинекологические инфекции (включая послеродовые); инфекции кожи и мягких тканей; менингит (воспаление оболочек мозга); септицемия (форма заражения крови микроорганизмами). Эмпирическая терапия (лечение без четкого определения причины заболевания), включая начальную монотерапию (лечение одним препаратом) при подозрении на бактериальную инфекцию у больных с ослабленным иммунитетом (защитными силами организма) и у больных с нейтропенией (уменьшением числа нейтрофилов в крови).

Способ применения и дозы. Перед назначением пациенту препарата желательно определить чувствительность к нему микрофлоры, вызвавшей заболевание у данного больного. Препарат вводят внутривенно каждые 8 ч. Разовую дозу и.продолжительность терапии устанавливают индивидуально, с учетом локализации инфекции и тяжести ее течения. Взрослым и детям с массой тела более 50 кг при пневмонии (воспаление легких), инфекциях мочеполового тракта, гинекологических инфекциях, в

том числе эндометрите (воспалении внутренней оболочки матки), инфекциях кожи и мягких тканей назначают в разовой дозе 0,5 г. При пневмонии, перитоните (воспалении брюшины), септицемии, а также при подозрении на бактериальную инфекцию у больных с нейтропенией разовая доза 1 г; при менингите - 2г. Для детей в возрасте от 3 месяцев до 12 лет разовая доза составляет 0,01-0,012 г/кг. У больных с нарушением функции почек режим дозирования устанавливают в зависимости от значений клиренса креатинина (скорости очищения крови от конечного продукта азотистого обмена -креатинина). Меропенем вводят в виде внутривенной инъекции в течение не менее 5 мин, либо в виде внутривенной инфузии в течение 15-30 мин. Для внутривенных инъекций препарат разводят стерильной водой для инъекций (5 мл на 0,25 г препарата, что обеспечивает концентрацию раствора 0,05 г/мл). Для внутривенных инфузии препарат разводят 0,9% раствором натрия хлорида, 5% или 10% раствором глюкозы.

Побочное действие. Крапивница, сыпь, зуд, боль в животе, тошнота, рвота, понос; головная боль, парестезии (чувство онемения в конечностях); развитие суперинфекции (тяжелых, стремительно развивающихся форм инфекционного заболевания, вызванного устойчивыми к препарату микроорганизмами, ранее находившимися в организме, но себя не проявляющими), в том числе, кандидоза (грибкового заболевания) полости рта и влагалища; в месте внутривенного введения - воспаление и боль, тромбофлебит (воспаление стенки вены с ее закупоркой). Реже - эозинофилия (увеличение числа эозинофилов в крови), тромбоцитопения (уменьшение числа тромбоцитов в крови), нейтропения (уменьшение числа нейтрофилов в крови); ложноположительная прямая или непрямая проба Кумбса (исследования, диагносцируюшего аутоиммунные заболевания крови). Описаны случаи обратимого повышения сывороточного билирубина (пигмента желчи), активности ферментов: трансаминаз, шелочной фосфатазы и лактатдегидрогеназы.

Противопоказания. Повышенная чувствительность к препарату, к карбапенемам, пенициллинам и другим беталактамным антибиотикам.

С осторожностью назначают меропенем пациентам с заболеваниями желудочно-кишечного тракта, особенно колитами (воспалением толстой кишки), а также пациентам с заболеваниями печени (под контролем активности трансаминаз и концентрации билирубина в плазме крови). Следует иметь в виду возможность возникновения псевдомембранозного колита (кишечной колики, характеризующейся приступами болей в животе и выделением большого количества слизи с калом) в случае развития диареи (поноса) на фоне приема антибиотика. Совместное введение меропенема с потенциально нефротоксичными (повреждающими почки) препаратами должно применяться с осторожностью.

Препарат следует с осторожностью назначать больным с указанием на аллергические реакции в анамнезе (истории болезни).

Применение меропенема в периоды беременности и кормления грудью возможно только в тех случаях, когда потенциальная польза от его применения, по мнению врача, оправдывает возможный риск для плода или ребенка. В каждом случае требуется строгий врачебный контроль. Нет опыта применения меропенема в педиатрической практике у пациентов с нейтропенией или вторичным иммунодефицитом. Эффективность и переносимость препарата у детей в возрасте до 3 мес. не установлена, в связи с чем его не рекомендуют для повторного применения у этой категории пациентов. Нет опыта применения у детей с нарушением функции печени и почек.

Форма выпуска. Сухое вещество для внутривенного введения во флаконах по 0,5 г и 1 г.

Условия хранения. Список Б. В сухом, защищенном от света месте.